
JAVA SE

Quiz yourself: Understanding
valid annotation declarations
Explore the allowed method return
types to see where the code
succeeds… or fails.

by Simon Roberts and Mikalai Zaikin

January 11, 2021

If you have worked on our quiz questions in the past, you know
none of them is easy. They model the difficult questions from
certification examinations. We write questions for the certification
exams, and we intend that the same rules apply: Take words at
their face value and trust that the questions are not intended to
deceive you but to straightforwardly test your knowledge of the
ins and outs of the language.

In this Java SE 11 quiz, which code fragments are valid
annotation declarations? Choose two.

A.

The answer is A.

B.

@interface Lock {@interface Lock {
 String resource(); String resource();
 LocalDateTime start(); LocalDateTime start();
 LocalDateTime end(); LocalDateTime end();
}}

@interface ValidNumber {@interface ValidNumber {
 int value() = 3; int value() = 3;
}}

Quiz yourself: Understanding
valid annotation declarations

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/java-se-3
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

The answer is B.

C.

The answer is C.

D.

The answer is D.

E.

The answer is E.

Answer. This question explores two issues related to the
declaration of annotations. One is the valid type of an
annotation’s elements, and the other is the ability to declare
constants in an annotation.

Annotations are used in code to attach additional information to
program constructs, that is, to parts of the source code. In a
sense, they’re like those yellow sticky notes that you might write
a few words on and then stick on a page in a book. The following
shows one representative example of their usage:

In this example, the annotated program construct might be any
one of many things, such as a class, a method, a field, or
something else. In this example, the annotation name is shown
followed by parentheses and a key-value pair. The annotation’s
element mentioned above is essentially this key-value pair.

@interface Area {@interface Area {
 int[][] points(); int[][] points();
}}

@interface Allowlist {@interface Allowlist {
 String VER = "1.0.0"; String VER = "1.0.0";
 String[] words(); String[] words();
}}

enum Val {V1,V2,V3,V4,V5,V6};enum Val {V1,V2,V3,V4,V5,V6};
@interface RandomValues {@interface RandomValues {
 LocalDate lastUpdated = LocalDate.of(2020 LocalDate lastUpdated = LocalDate.of(2020
 public abstract Val[] choices() default { public abstract Val[] choices() default {
}}

@SomeAnnotation(key=aLiteralValue)@SomeAnnotation(key=aLiteralValue)
<annotated program construct><annotated program construct>

The elements of an annotation are declared in the annotation
type itself as methods. That method’s name defines the key, and
calling that method returns the value of the key/value pair. (By
the way, for this quiz, it’s unnecessary to discuss how to obtain
the runtime instance of an annotation.)

When the annotation is used, the value must be provided as a
compile-time constant (commonly, but not exclusively, as a
literal) in the source code. This constant value limits the types
that can be used and, therefore, the types that the methods are
permitted to return.

Java Language Specification section 9.6 documents the
declaration of annotation types.

The allowed method return types, documented in the Java
specification section noted above, are

In view of these rules, let’s investigate this quiz question’s
options.

Option A attempts to use with the type of the
elements being and . This isn’t on the list of
acceptable types and is not permitted. A moment’s reflection will
tell you that there’s no literal format defined in the Java
programming language for objects! So, you
can tell that option A is incorrect.

Option B appears to be an attempt to define a default value for
the element of the annotation. However, this syntax is
simply wrong. Default values are supported for annotation
elements, but they are created using the keyword , not
an equal sign. From this you know that option B is incorrect.

Option C tries to declare an element that is a two-dimensional
array of primitives. Although it’s possible to represent this as a
compile-time constant (again, often a literal), it’s not a permitted
form in an annotation. The last item in the allowed-return-types
list states “an array type whose component type is one of the
preceding types,” yet the previous items do not list an array type.
Remember that Java creates two-dimensional arrays as an array
of arrays. This tells you that option C is incorrect.

Option D declares an element that’s a one-dimensional array of
, which is fine. It also declares a constant: .

This is a normal behavior for an interface and is actually
permitted for an annotation too. It’s no different from any other

A primitive type

StringString

 or an invocation of ClassClass ClassClass

An type enumenum

An annotation type

An array type whose component type is one of the
preceding types



LocalDateTimeLocalDateTime

startstart endend

LocalDateTimeLocalDateTime

valuevalue

defaultdefault

StringString String VERString VER

https://docs.oracle.com/javase/specs/jls/se11/html/jls-9.html#jls-9.6

Simon Roberts
Simon Roberts joined Sun Microsystems in
time to teach Sun’s first Java classes in the
UK. He created the Sun Certified Java
Programmer and Sun Certified Java
Developer exams. He wrote several Java
certification guides and is currently a
freelance educator who publishes recorded
and live video training through Pearson
InformIT (available direct and through the
O’Reilly Safari Books Online service). He
remains involved with Oracle’s Java
certification projects.

Mikalai Zaikin
Mikalai Zaikin is a lead Java developer at
IBA IT Park in Minsk, Belarus. During his
career, he has helped Oracle with
development of Java certification exams,
and he has been a technical reviewer of
several Java certification books, including
three editions of the famous Sun Certified
Programmer for Java study guides by
Kathy Sierra and Bert Bates.

Share this Page

interface constant, and in the same way, this one is ,
, and even though this is not explicitly stated.

(This, too, is the same behavior as if this were a regular
interface.) Therefore, the annotation is valid, and option D is
correct.

Option E declares an element called . The method that
declares this has a return type of array of . Enum types are
the fourth item in the list of valid annotation element types, and
the fourth item is also included in the last item as a valid base
type for an array. So, this aspect is valid.

The declaration also includes a default value using the keyword
 and an array literal. This declaration demonstrates the

correct form, unlike the one shown in option B. The method that
declares all this is defined explicitly as and ,
which is redundant in any interface but nevertheless valid.

Finally, this option declares a constant of type .
While is not permitted as an element type, this is
simply a constant and not subject to the same constraints. From
these observations it’s clear that option E is correct.

Conclusion: The correct answers are options D and E.

publicpublic

staticstatic finalfinal

choiceschoices

enumenum

defaultdefault

publicpublic abstractabstract

LocalDateLocalDate

LocalDateLocalDate



https://blogs.oracle.com/javamagazine/simon-roberts
https://blogs.oracle.com/javamagazine/simon-roberts
https://blogs.oracle.com/javamagazine/mikalai-zaikin
https://blogs.oracle.com/javamagazine/mikalai-zaikin

 
Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

