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Abstract

We propose an algorithmic framework to solve a non-convex localization problem using a
non-convex least squares formulation and squared range measurements. Our main contri-
bution is a distributed method based on ADMM (Alternating Direction Method of Multi-
pliers) by solving local non-convex quadratic subproblems. We prove convergence towards
a stationary solution.
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1. Introduction

Localization problems arise in a variety of scenarios and applications, and have been amply
studied in the literature Beck et al. (2008); Tarrio et al. (2008); Lin and So (2011). However,
these approaches are centralized, i.e., a fusion node knows the location of every sensor and
the ranged measurements. In this paper, we focus on learning the position of a target
node in a distributed manner using noisy measurements of distances between the target
and the network nodes. This formulation arises, for example, in the estimation of a user’s
location that is reached by different base stations within a cellular network. Given a set of
nodes Q@ = {1,...,Q} with known position s; € RP, the distance measurements d; between
the network node ¢ € @ and the target node, we estimate the target node’s position:

min Y (v = s — )", (1)

i€Q

where x € RP and p is typically 2 or 3, if the localization is in the plane or in a three-
dimensional space, respectively. However, (1) is non-convex and presents certain difficulties.

Decentralized approaches such as Chen and Sayed (2012); Di Lorenzo and Scutari (2016)
minimize a global function such as (1) by minimizing a local version, but use first order
methods to simplify the procedure. However, by exploiting the nonconvex quadratic for-
mulation, we can easily improve the convergence results. Our proposed algorithm uses an
ADMM decomposition (Alternating Direction Method of Multipliers). However, ADMM
has no convergence guarantees when the problem is non-convex, as is the case in (1), so we
analyze its convergence towards the global solution of the problem.
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1.1. Algorithmic Framework

We reformulate the original problem (1) as follows:
> (ti—d3)?

i€Q

lzi — sill* — t; = 0,

(2)
T, =2 VieQ

where x = (z;)ic0, t = (ti)ico, ti € R and z;, z € RP. Problem (2) is non-convex, but
includes slack variable z to facilitate a separable formulation. In particular, the augmented
Lagrangian can be decomposed as follows:

L,(t,x,z,n) =

Z L tz; Tiy 2 Nz)

i€Q

3)

where the local Lagrangians have the following form:

Li(ti, s, 2, ) = (b — d7) + pf (2 — 2) + pllwi — 2%, (4)
and p = (li)ico, i € RP are dual variables associated with the cost of disagreement
between the x; and z; p > 0 weights the proximal term that induces strong convexity in z;;
and, variables z;, t; have to satisfy ||z; — s;||* = t;.

From the Lagrangian (3), we can derive the ADMM steps:

k+1

tf“ and x;

1. Solve Vi € Q and assign the solution to

s.t. Hxi—sng—ti =0.

: ] k  k
argmin L;(tz,l‘“ 2y )a

ti,xq

2. Update 251 = L 57, o (af ™ + Lub).

3. Update pfth = b 4 2p(ah™ — 2F+1),

In step 1 every network node i € Q solves a non-convex problem in parallel. Then,
estimates are interchanged between nodes, or average consensus is executed, see e.g. Xiao
et al. (2007), in order to update z. Finally, dual variables p; are updated locally.
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Figure 1: Convergence to solution, variabilitiy per iteration and divergence between nodes.
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