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Universidad Politécnica de Madrid, Escuela Superior de Ingenieros de Telecomunicación.

Abstract

We propose an algorithmic framework to solve a non-convex localization problem using a
non-convex least squares formulation and squared range measurements. Our main contri-
bution is a distributed method based on ADMM (Alternating Direction Method of Multi-
pliers) by solving local non-convex quadratic subproblems. We prove convergence towards
a stationary solution.
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1. Introduction

Localization problems arise in a variety of scenarios and applications, and have been amply
studied in the literature Beck et al. (2008); Tarŕıo et al. (2008); Lin and So (2011). However,
these approaches are centralized, i.e., a fusion node knows the location of every sensor and
the ranged measurements. In this paper, we focus on learning the position of a target
node in a distributed manner using noisy measurements of distances between the target
and the network nodes. This formulation arises, for example, in the estimation of a user’s
location that is reached by different base stations within a cellular network. Given a set of
nodes Q = {1, . . . , Q} with known position si ∈ Rp, the distance measurements di between
the network node i ∈ Q and the target node, we estimate the target node’s position:

min
x

∑
i∈Q

(
‖x− si‖2 − d2

i

)2
, (1)

where x ∈ Rp and p is typically 2 or 3, if the localization is in the plane or in a three-
dimensional space, respectively. However, (1) is non-convex and presents certain difficulties.

Decentralized approaches such as Chen and Sayed (2012); Di Lorenzo and Scutari (2016)
minimize a global function such as (1) by minimizing a local version, but use first order
methods to simplify the procedure. However, by exploiting the nonconvex quadratic for-
mulation, we can easily improve the convergence results. Our proposed algorithm uses an
ADMM decomposition (Alternating Direction Method of Multipliers). However, ADMM
has no convergence guarantees when the problem is non-convex, as is the case in (1), so we
analyze its convergence towards the global solution of the problem.
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1.1. Algorithmic Framework

We reformulate the original problem (1) as follows:

min
t,x, z

∑
i∈Q

(ti − d2
i )

2

s.t. ‖xi − si‖2 − ti = 0, xi = z ∀i ∈ Q
(2)

where x = (xi)i∈Q, t = (ti)ı∈Q, ti ∈ R and xi, z ∈ Rp. Problem (2) is non-convex, but
includes slack variable z to facilitate a separable formulation. In particular, the augmented
Lagrangian can be decomposed as follows:

Lρ(t,x, z,µ) =
∑
i∈Q

Liρ(ti, xi, z, µi) (3)

where the local Lagrangians have the following form:

Liρ(ti, xi, z, µi) = (ti − d2
i )

2 + µTi (xi − z) + ρ‖xi − z‖2, (4)

and µ = (µi)i∈Q, µi ∈ Rp are dual variables associated with the cost of disagreement
between the xi and z; ρ > 0 weights the proximal term that induces strong convexity in xi;
and, variables xi, ti have to satisfy ‖xi − si‖2 = ti.

From the Lagrangian (3), we can derive the ADMM steps:

1. Solve ∀i ∈ Q and assign the solution to tk+1
i and xk+1

i :

arg min
ti,xi

Liρ(ti, xi, z
k, µki ), s.t. ‖xi − si‖22 − ti = 0. (5)

2. Update zk+1 = 1
Q

∑
i∈Q(xk+1

i + 1
2ρµ

k
i ).

3. Update µk+1
i = µki + 2ρ(xk+1

i − zk+1).

In step 1 every network node i ∈ Q solves a non-convex problem in parallel. Then,
estimates are interchanged between nodes, or average consensus is executed, see e.g. Xiao
et al. (2007), in order to update z. Finally, dual variables µi are updated locally.
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Figure 1: Convergence to solution, variabilitiy per iteration and divergence between nodes.
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