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Abstract

Understanding biological network dynamics is a fundamental issue in various scientific and
engineering fields. Here we introduced a data-driven spectral analysis called graph dy-
namic mode decomposition, which obtains the dynamical properties for collective motion
classification. Using a ballgame as an example, we classified the strategic collective mo-
tions in different global behaviors and discovered the label-specific stronger spectra in the
relationship among the nearest agents, providing physical and semantic interpretations.
Our approach contributes to the understanding of principles of biological complex network
dynamics from the perspective of nonlinear dynamical systems.
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1. Introduction

Our motivation is to understand the principles of network dynamics of biological complex
collective motions by directly extracting the dynamical properties of the network in a data-
driven manner. As a method of describing nonlinear dynamical systems with a global mode
by the direct extraction of dynamical properties, operator-theoretic approaches such as
the Koopman operator (Koopman, 1931) have attracted attention in fields such as applied
mathematics, physics and machine learning. One of the most popular algorithms for spectral
analysis of the Koopman operator is dynamic mode decomposition (DMD)(Rowley et al.,
2009; Schmid, 2010). Among several variants of DMDs, Graph DMD (Fujii and Kawahara,
2019; Fujii et al., 2019) can extract and visualise the underlying low-dimensional global
dynamics of graph dynamical systems (GDSs) with structures among observables from
data. For the related works, see (Fujii and Kawahara, 2019).

2. Graph DMD

First, we consider an autonomous discrete-time weighted and undirected GDS described
using an adjacency matrix A; € R™*™ whose element represents the weight on the rela-
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tionship between components (e.g., agents) at each time ¢ (for details, see (Fujii et al., 2019)).
For the practical implementation of Koopman spectral analysis with dependent structure
among observables (Fujii et al., 2019), a modified tensor-based DMD (Fujii and Kawahara,
2019) is applied to the adjacency matrix series. In summary, a sequence of adjacency ma-
trices is decomposed into spatial coefficients and temporal dynamics: A; = Z?:l ij\ébjp,
where A; called Graph DMD eigenvalue characterises the time evolution, i.e., the phase of
Aj determines its frequency and the magnitude determines the growth rate of its dynamics,
Z; € C™*™ is the spatial coefficients called Graph DMD modes, and b; o works as an initial
value.

3. Experiments and conclusion

Using a basketball game as an example, we classified the strategic collective motions in dif-
ferent global behaviors and discovered the label-specific stronger spectra in the relationship
among the nearest agents, providing physical and semantic interpretations (for the detail,
see (Fujii et al., 2019)). Our approach contributes to the understanding of principles of
biological complex network dynamics from the perspective of nonlinear dynamical systems.
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