


#### **Forward**



We believe that small stories can spark big change. That is why we have made this book available as a free resource for parents, teachers, and community members.

All materials in this pamphlet may be freely downloaded, shared, printed and used for educational or nonprofit purposes.



# Understanding Microfibers: The Hidden Microplastics

While most people think of microplastics as broken bottles or fragments of foam coolers, the majority found near Outer Banks inlets are tiny synthetic clothing fibers.

#### **What They Are**

Microfibers are thread-like pieces, often thinner than a human hair, shed from synthetic fabrics such as:

- Polyester
- Nylon
- Spandex
- Acrylic
- Polypropylene-blend athletic fabrics
- Fleece jackets and blankets

#### These fibers contain:

- Plastic polymers
- Chemical dyes
- UV stabilizers
- Antimicrobial coatings
- Flame retardants
- PFAS (associated with water resistant clothing)

### Why the Outer Banks Has a Microfiber Problem

The Outer Banks is uniquely vulnerable because it sits at the final receiving end of massive freshwater systems and human activity happening far inland.

#### "The Coastal Funnel Effect"

Rivers from hundreds of miles away empty into Pamlico and Albemarle Sounds. These waterways act like a funnel, concentrating microfibers that then push toward major inlets:

- Oregon Inlet
- Hatteras Inlet
- Ocracoke Inlet

From here, tides distribute them across beach surf zones, marsh edges, and seagrass meadows.

#### **Septic Systems**

Much of the Outer Banks uses septic systems, not centralized wastewater treatment.

These allow:

- Laundry water
- Greywater
- Outdoor hose rinsing

...to seep into groundwater, which flows into canals and sounds.

Microfibers pass through septic drainfields easily because they're extremely small and buoyant.

#### **Tourism Pressure**

Millions of visitors bring:

- Fleece blankets
- Microfiber towels
- Fast-fashion swimwear
- Synthetic athletic clothing

When these are washed in rental homes, it creates a seasonal spike in microfiber pollution — especially during June–September.

### **How Microfibers Enter the Waterways**

#### **Inside the Home**

Each wash cycle releases 100,000–700,000 fibers. Sources include:

- Fleece jackets (worst offenders)
- Leggings and yoga pants
- Quick-dry shorts
- Swimsuits
- Bedding (microfiber sheets)
- Towels labeled "quick dry" or "microfiber"
- Carpets and blankets washed after a sandy beach day

#### These fibers:

- Slip through washing machine drains
- Pass through septic or municipal systems
- Travel to streams → rivers → sounds → ocean

**Stormwater Transport** 

Strong Outer Banks winds blow fibers from:

- Drying racks
- Balcony laundry
- Outdoor beach towels
- Lint traps and trash cans

Storm drains send them straight to

- Estuarine creeks
- Drainage ditches
- Soundside canals
- Saltmarsh edges



# Microfiber Impacts on Outer Banks Wildlife and Ecosystems

#### **Oysters**

Oysters filter up to 50 gallons of water a day, pulling in microfibers. Effects include:

- Reduced filtration efficiency
- Lower reproductive success
- Internal blockages
- Inflammation from chemical additives

Oyster reefs around Hatteras Island and Roanoke Sound already show elevated microfiber levels.

#### Fish & Juvenile Nursery Areas

Seagrass meadows in the Outer Banks are nurseries for:

- Spot
- Croaker
- Flounder
- Shrimp
- Blue crabs

#### Microfibers disrupt:

- Growth rates
- Gut function
- Food-finding behavior
- Oxygen uptake

Juvenile fish consume microfibers that look like tiny worms.

#### **Dolphins and Marine Mammals**

Outer Banks dolphins feed in:

- Oregon Inlet
- Roanoke Sound
- Hatteras Island nearshore waters

Microfibers enter through their prey. Risks include:

- Tissue inflammation
- Impaired nutrient absorption
- Increased exposure to toxins adhered to fibers

#### **Shorebirds**

Species such as:

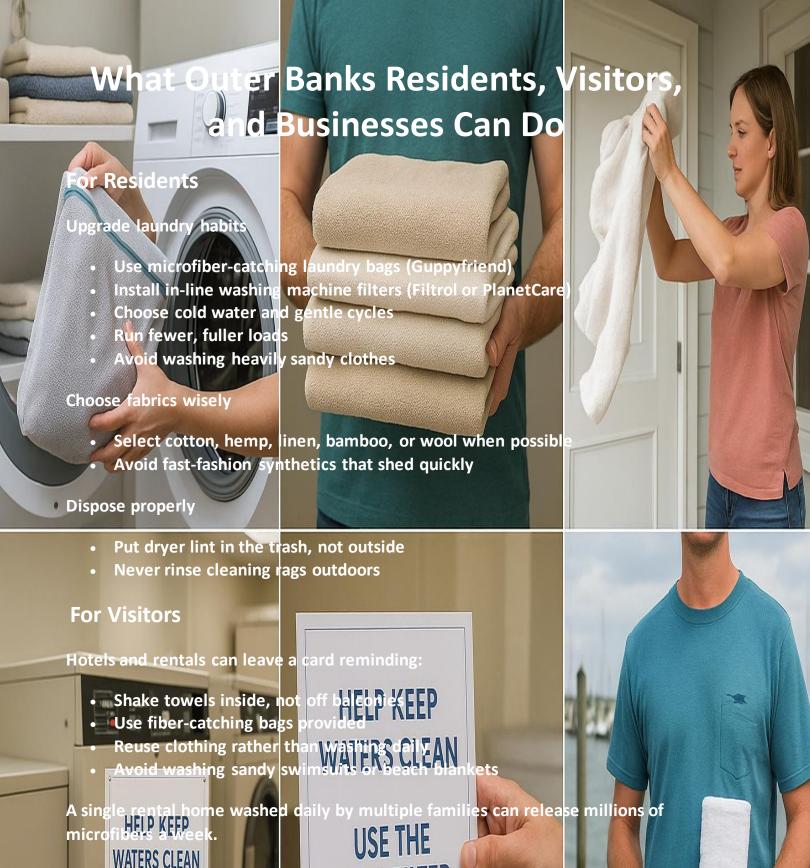
- Sanderlings
- Piping plovers
- Pelicans

...mistake tiny synthetic fibers for strands of food or ingest them while probing the sand.

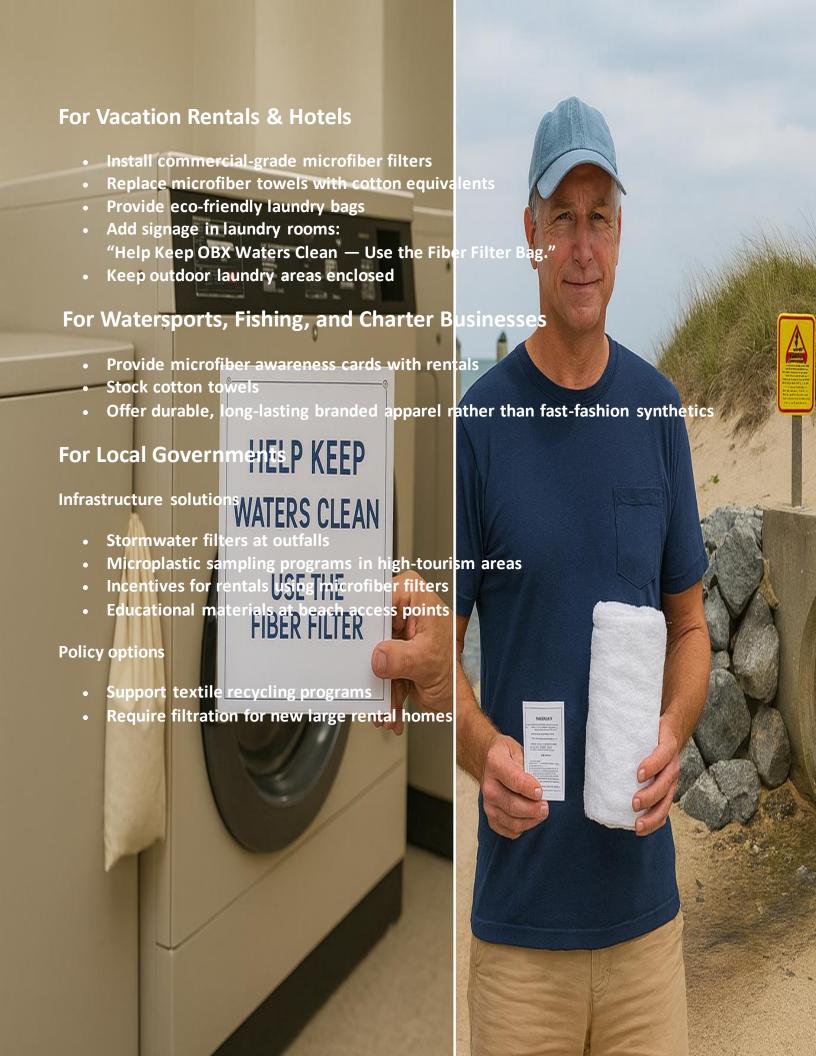
#### Marshes & Seagrasses

Microfibers accumulate in the roots of:

- Spartina alterniflora
- Zostera marina (eelgrass)
- Halodule wrightii (shoal grass)


#### This reduces:

- Sediment stability
- Oxygen flow
- Root health


...and threatens habitats critical to sea turtles and scallops.







**USE THE** FIBER FILTER FIBER FILTER



# Long-Term Solutions for Outer Banks Clean Water

#### **Promote Natural Fibers**

As cotton, hemp, and linen clothing grows in popularity, microfiber shedding drops dramatically.

Invest in Community-Scale Filtration

Filters at storm drains and pump stations can capture fibers before they enter soundside ecosystems.

**Restore Natural Filters** 

Salt marshes and oyster reefs naturally trap some microplastics — protecting and rebuilding them is crucial.

#### **Public Education**

Widespread awareness helps align:

- Households
- Visitors
- Rentals
- Businesses
- Local governments

...toward a shared goal of cleaner waters.





- Microfibers are the #1 microplastic found on Outer Banks beaches.
- A single synthetic blanket shed enough fibers to stretch 30 miles end to end.
- Clothing marketed as "made from recycled bottles" can shed even more than regular polyester.
- Microfibers are now found in clouds, meaning the Outer Banks gets some from atmospheric fallout.
- Dye chemicals on microfiber threads have been linked to hormone disruption in wildlife.





### **Checklist for Reducing Microfiber Pollution**

|     | Laundry                                                                                                                                                                                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <ul> <li>□ Use microfiber-catching laundry bag</li> <li>□ Install a washing machine microfiber filter</li> <li>□ Wash on cold &amp; gentle</li> <li>□ Wash fewer, fuller loads</li> <li>□ Avoid washing sandy items</li> <li>□ Keep lint trap empty (and dispose indoors)</li> </ul> |
|     | Clothing Choices                                                                                                                                                                                                                                                                     |
|     | <ul> <li>□ Choose natural fibers</li> <li>□ Buy higher-quality garments</li> <li>□ Avoid cheap synthetics</li> </ul>                                                                                                                                                                 |
| No. | Around the Home                                                                                                                                                                                                                                                                      |
|     | ☐ Line-dry when possible ☐ Avoid outdoor shaking of towels and blankets ☐ Keep outdoor drains clear  Visitors                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                      |
|     | <ul> <li>□ Shake beach towels indoors</li> <li>□ Use provided laundry bags</li> <li>□ Don't wash sandy clothes</li> <li>□ Reuse clothing during your stay</li> </ul>                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                      |

#### References

Andrady, A. L. (2011). Microplastics in the marine environment. *Marine Pollution Bulletin, 62*(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: Sources and sinks. *Environmental Science & Technology*, 45(21), 9175–9179. https://doi.org/10.1021/es201811s

Carr, S. A. (2017). Sources and dispersive modes of micro-fibers in the environment. *Integrated Environmental Assessment and Management*, 13(3), 466–469. https://doi.org/10.1002/ieam.1916

Cesa, F. S., Turra, A., & Baruque-Ramos, J. (2017). Synthetic fibers as microplastics in the marine environment: A review from textile perspective. *Science of the Total Environment*, 598, 220–233. https://doi.org/10.1016/j.scitotenv.2017.03.115

Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. *Marine Pollution Bulletin*, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

**Duke University Marine Lab. (2022).** Microplastic pollution in North Carolina estuaries: Sources, pathways, and ecological risks. Duke University Press.

Gall, S. C., & Thompson, R. C. (2015). The impact of debris on marine life. Marine Pollution Bulletin, 92(1–2), 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Hartline, N. L., Bruce, N. J., Karba, S. N., Chen, V. P., & Kelly, M. R. (2016). Microfiber masses recovered from conventional machine washing of new or aged garments. *Environmental Science & Technology*, 50(21), 11532–11538. https://doi.org/10.1021/acs.est.6b03045

Henry, B., Laitala, K., & Klepp, I. G. (2019). Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. *Science of the Total Environment*, 652, 483–494. https://doi.org/10.1016/j.scitotenv.2018.10.166

NOAA Marine Debris Program. (2023). *Microplastics: Tiny plastics, big problems*. National Oceanic and Atmospheric Administration.

**Petersen, C. W., Gallagher, J. S., & Wells, J. T. (2018).** Microplastic contamination in North Carolina coastal waters. *Southeastern Geographer, 58*(4), 353–373.

Sillanpää, M., & Sainio, P. (2017). Release of polyester and cotton fibers from textiles in household washing. *Environmental Science and Pollution Research*, 24(23), 19313–19321. https://doi.org/10.1007/s11356-017-9621-1

Sutherland, K. P., Porter, J. W., Turner, J. W., Thomas, B. J., Looney, E. E., & Lipp, E. K. (2010). Human sewage identified as likely source of white pox disease of the threatened Caribbean elkhorn coral. *PLoS ONE*, 5(8), e10468.

Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. *Philosophical Transactions of the Royal Society B, 364* (1526), 2153–2166. <a href="https://doi.org/10.1098/rstb.2009.0053">https://doi.org/10.1098/rstb.2009.0053</a>

Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A review. *Environmental Science & Technology*, 51(12), 6634–6647. https://doi.org/10.1021/acs.est.7b00423