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Abstract

We study the outcome of the amendment voting procedure based on a potentially

incomplete preference relation. A decision-maker evaluates candidates in a list and

iteratively updates her choice by comparing the status-quo to the next candidate. She

favors the status-quo when the two candidates are incomparable according to her un-

derlying preference. Developing a revealed preference approach, we characterize all

choice functions that can arise from such a procedure and discuss to what extent the

underlying preference can be identified from observed choices.
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1 Introduction

A popular voting method is the “amendment voting procedure”, whose description

and analysis dates back to Farquharson [11]. According to this procedure, the decision-

maker (henceforth DM) is faced sequentially with a finite set of candidates, or agendas.

At any time along the list, the DM compares her current choice to the next candidate

in line, choosing which candidate to keep based on a complete and asymmetric binary

relation that represents her underlying preference. Miller [25] shows that a candidate

is the final vote from some list if and only if it belongs to the “top cycle” of the binary

relation.1

In many real-world situations, the DM’s preference need not be complete. For

example, the preference could be dependent on multiple factors that are difficult to

aggregate, as in Dubra et al. [10]. It is also possible that the DM is indifferent between

certain pairs of candidates due to “just noticeable differences”, in the sense of Luce

[21]. These possibilities motivate us to generalize the classic model of amendment

voting by allowing the DM to entertain an incomplete preference. We will however

restrict attention to transitive preferences, so as to capture the aforementioned types

of incompleteness we have in mind.

To define the amendment voting procedure for incomplete preferences, we must

specify how the DM chooses between two candidates who are incomparable. Follow-

ing the findings in the behavioral economics literature (e.g. Kahneman and Tversky

[18]), we assume throughout that the DM favors her current choice to the next can-

didate whenever incomparability arises. In Appendix D, we discuss the alternative

model for “recency-biased” agents (who are biased toward the later candidates) and

the corresponding results.

We are primarily concerned with the following question: given a choice function

from all lists to final votes, is it possible to identify the DM’s underlying preference

that induces this mapping via the generalized amendment procedure? The answer turns

1Given a binary relation P on a finite set S, the top cycle is defined as the set of candidates in S that
are directly or indirectly P -preferred to every other candidate.
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out to be negative: often times multiple incomplete preferences lead to the same choice

function. However, we show that among these possible preference relations, there

is a minimal one with respect to set inclusion. This minimal preference admits the

“robust inference” interpretation, in the sense that it captures everything the analyst

can deduce with certainty from observed votes.

We derive the minimal preference using a novel revealed preference method. Say

that a candidate y is revealed-preferred to another candidate x, if in a list that begins

with x, either y is the final vote, or changing the position of y affects the final vote.

Due to transitivity, either of these conditions implies that y must be preferred to x

according to the DM’s true preference. Thus our revealed preference is included in any

possible underlying preference. The core of our argument, then, is to show that such

a revealed preference is rich enough to generate the choice data.

While our result is strongest when choices from all lists are observed, the revealed

preference approach does extend to settings with less data, yielding out-of-sample

predications. We discuss this more general identification and prediction problem in

Appendix C.

2 Model

Let S denote a finite set of candidates. A list over S is an ordered sequence (or per-

mutation) π = x1x2 . . . xn which enumerates the candidates in S without repetition.2

Given an asymmetric, transitive binary relation P on S,3 we say that the DM’s choice

follows the amendment procedure with preference P if his choice c(π) can be defined

2Throughout, we will write lists in this way, without commas or brackets, to distinguish them from sets.
3Such a binary relation is also called a strict partial order, a terminology we will use in what follows.
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as follows:

c(x1) = x1;

c(x1x2 . . . xk) =


xk, if xk is P -preferred to c(x1x2 . . . xk−1);

c(x1x2 . . . xk−1), otherwise.

∀2 ≤ k ≤ n.

(2.1)

In words, the DM is faced with the candidates x1, x2, . . . , xn in this order. She always

keeps one candidate in mind and compares him to the next candidate from the list.

We assume that the DM suffers from status-quo bias, so that she replaces the current

candidate in mind with the new one if and only if the latter is strictly preferred ac-

cording to P . We call the candidate c(x1x2 . . . xn) the DM’s final vote from the list

π = x1x2 . . . xn.4

A pair of simple examples will help illustrate. First consider three candidates x, y, z,

and suppose the DM’s preference P is such that yPx, zPx, but y, z are incomparable.

Her final votes from different lists are c(xyz) = c(yxz) = c(yzx) = y, and c(xzy) =

c(zxy) = c(zyx) = z. We see here that with a transitive but incomplete preference,

different lists result in different final votes. This example also has the property that

either of the two P -maximal candidates (y and z) is chosen depending on which one

occurs earlier in the list. In general however, the final vote depends more subtly on the

list. For example, consider four candidates x, y, z, w and a preference P such that yPx,

wPz and all other pairs are indifferent. In this case a DM following the amendment

procedure chooses the candidate w from the list zxyw despite the candidate y appearing

earlier, and she chooses y from the list xzwy despite w appearing earlier.

We provide a plausible story for the latter example: imagine that x, y, z, w are four

political candidates. Candidates x and y both brag about their expertise in managing

4In a different specification, one might consider a DM who chooses the later candidate whenever direct
comparison cannot be made. That variant of the model and its implications are discussed in Appendix C. We
remark here that status-quo bias fits our sequential choice setting better, both empirically and theoretically.
On the theoretical side, we show below that a status-quo biased DM chooses a P -maximal candidate from
any list, thus achieving Pareto efficiency. This is not true for “recency-biased” decision-makers.
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the economy, although y has more experience in this regard. On the other hand,

candidates z and w campaign about their practical solutions to the country’s racial

divide, and it is believed that w has a better policy proposal than z. When faced

with the candidates z, x, y, w in this order, the DM’s attention is immediately drawn

to candidate z’s claim for a more unified nation. This leads her to underweight the

value of economic reforms brought by the next two candidates x and y. But when it

comes lastly to candidate w, the DM recognizes his better policy for dealing with the

racial problem, and so she votes for w. In a similar way, she would vote for y from

the list xzwy. Such effects of salience on choice have been more explicitly studied in

Bordalo et al. [5] [6].

Given an asymmetric transitive relation P , our first result characterizes the set of

final votes as the list varies.

Proposition 1. Suppose the DM follows the amendment procedure with strict partial

order P . Then the candidates that are ever chosen from some list are the P -maximal

candidates in S.

Proof. In one direction, suppose candidate x is P -maximal in S. Then in any list

π that begins with x, x will be the final vote due to status-quo bias. Conversely,

suppose x is not P -maximal and there exists some candidate y s.t. yPx. Assume

for contradiction that x is the final vote in some list π. Observe that according to

the amendment procedure, in any list π = x1 . . . xn, c(x1 . . . xj) is either equal to or

P -preferred to c(x1 . . . xj−1),∀j. Hence by transitivity, x = c(x1 . . . xn) is P -preferred

to every c(x1 . . . xj−1). Let us now choose the subscript j so that y = xj . Then by

the previous claim, y is preferred to x which is in turn preferred to c(x1 . . . xj−1). By

transitivity, this implies y = c(x1 . . . xj). But then x = c(x1 . . . xn) is preferred to

y = c(x1 . . . xj), contradicting the asymmetry of P . �

The above proposition enables the analyst to recover partial information about the

DM’s preference from her final votes. Can the analyst learn more? This is the question

we turn to in the next section.
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3 Revealed Preference

We begin by formalizing the choice function that we will take as primitive. Let Π(S)

denote the set of all lists over S. For any preference relation P , the amendment voting

rule as defined in (2.1) yields a choice function cP : Π(S)→ S, where cP (π) represents

the DM’s final vote from the list π.

To understand the properties of such a choice function, we will take a revealed

preference approach. Given any choice function c : Π(S) → S, we define a binary

relation P ∗ such that yP ∗x if either of the following two conditions holds:

Condition I: c(π) = y for some list π that begins with x;

Condition II: c(π) 6= c(π′) for some list π that begins with x and another list π′ that

is obtained from π by moving the candidate y to an arbitrary position.

Any choice function c determines a revealed preference P ∗(c) through this pair of

conditions, and we will often simply write P ∗ when there is no confusion. The next

lemma shows that when the choice function arises from the amendment procedure, the

revealed preference is part of the true underlying preference.

Proposition 2. If c = cP for some strict partial order P , then P ∗(c) ⊂ P .

Proof. It suffices to show that if y is not P -preferred to x, then y is not revealed-

preferred to x. From transitivity, we see that Condition I can never be satisfied. In

fact, when faced with a list that begins with x, the DM never chooses y at any time

along the list. Thus the position of y does not affect the final vote, and Condition II

will not be satisfied either. �

To see why Condition II is necessary, consider four candidates x, y, z, w and a prefer-

ence P such that wPyPx, zPx and all other pairs are incomparable. A decision-maker

following the amendment procedure chooses w from the list xyzw but z from the list

xzyw. Only by Condition II (and not Condition I) can the analyst infer that the DM

prefers y to x, which is essential to explain the aforementioned choices.

We also note that Condition II provides a simple experimental design to study such

6



sequential choice problems — by varying the position of y in a list that begins with

x (and vice versa), one can glean information regarding the preference between these

two candidates.

It turns out that the revealed preference so defined contains everything the analyst

can identify from observed votes. In other words, if the choice function c arises from the

amendment procedure with some transitive preference P , then the revealed preference

P ∗ is also transitive, and it generates the same final votes via amendment voting.

Theorem 1. Fix a choice function c : Π(S)→ S and define P ∗ as its revealed prefer-

ence. Then c = cP for some strict partial order P if and only iff (henceforth iff) P ∗ is

a strict partial order and c = cP
∗
.

Proof. We sketch an outline of the proof here: the “if” part is trivial, and we focus

on the “only if”. First, we note by Condition II that any candidate z not revealed-

preferred to the first candidate x can be moved to later in the list, without affecting

the final vote. Repeatedly applying this observation, we may without loss assume that

the candidate y immediately after x is P ∗-preferred to x. Next, as P ∗ is included in P ,

we deduce from yP ∗x that yPx. Thus, switching the first two candidates x and y does

not change the final vote by a DM with true preference P . This leads us to a different

list with the same final vote: the new list starts with y instead of x, with y being the

first candidate in the original list that is revealed-preferred to x. Thus the DM’s choice

from the original list is as if she carries out the amendment procedure with underlying

preference P ∗. This proves cP = cP
∗
. The remaining difficulty is to prove that P ∗ is

also a strict partial order (when P is); this is relegated to the appendix. �

We remark that the theorem not only tells us that the revealed preference is what

the analyst can “robustly” infer from observed votes. It also solves the characterization

problem of what choice data are consistent with the generalized (status-quo biased)

amendment procedure with incomplete preferences. All one has to do is to compute the

revealed preference and verify whether the choice function it generates coincides with
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what is observed. As a corollary of the proof above, we have an alternative method to

verify whether a given choice function can arise from amendment voting:

Corollary 1. Fix a choice function c : Π(S) → S and define P ∗ as its revealed

preference. Then c = cP for some strict partial order P iff P ∗ is a strict partial order

and c(xyA) = c(yxA) whenever yP ∗x.

In Appendix A, we show that our results extend without change to the case where

the true preference P is further restricted to be an interval-order or semi-order.5 To

be specific, we prove that c = cP for some interval-order/semi-order iff the revealed

preference P ∗ is an interval-order/semi-order and c = cP
∗
.

We note that in general, the true preference P need not coincide with the revealed

preference P ∗; in other words, there may be multiple underlying preferences that ex-

plain the same choice data.6 Despite this non-uniqueness, the following result gives

structure to the family of possible underlying preferences.

Theorem 2. Suppose P and Q are strict partial orders such that cP = cQ = c. Let P ∗

be the revealed preference derived from c. Then for any strict partial order R satisfying

P ∗ ⊂ R ⊂ P ∨Q, it holds that cR = c as well. In particular, cP∧Q = c.7

Proof. See Appendix B.

4 Related Literature

Following the paper of Arrow [2], there has been a large literature relating choice cor-

respondence to the underlying preference relation. Notably, Jamison and Lau [17] and

Fishburn [13] establish necessary and sufficient conditions for a choice correspondence

5An interval-order P is a strict partial order that satisfies PIP ⊂ P , where I is the indifference relation
associated with P , and PIP denotes the concatenation of these binary relations. Any such preference admits
an “interval representation”: yPx ⇔ u(y) > u(x) + b(x), for some functions u(·) and b(·). If in addition
PPI ⊂ P , then one can take b(x) = 1,∀x and obtain a semi-order. See Beja and Gilboa [4] and Fishburn
[12], Section 2.4.

6An easy example is when P is a complete preference over 3 or more candidates.
7Here, P ∨Q denotes the union of the binary relations, while P ∧Q denotes their intersection. Note that

we do not claim cP∨Q = c, because P ∨Q is not necessarily a strict partial order.
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c : 2S\{∅} → S to be given by c(T ) = {P -maximal elements in T}, where P is an in-

terval order or a semi-order. Like these authors, we are also interested in the problem

of recovering underlying preference from choice data. But our domain is the space of

lists, which differs from these classical papers.

Empirical literature has well documented the order effect on choice. Miller and

Krosnick [24] and Krosnick et al. [20] find statistically significant and sometimes large

effects of being listed first on the vote shares of major party candidates in the U.S.

state and federal elections. The “first-position advantage” these papers highlight is a

special case of the status-quo bias captured by our model. On the other hand, Bruine

de Bruin [7] reports on order effects in panel decisions in contests such as the World

Figure Skating Competition and the Eurovision Song Contest. He finds that the last

few participants in the contest have an advantage, corresponding to the model with

recency bias in Appendix C.

The agenda-rationalizable choice of Apesteguia and Ballester [1], the tournament

choice of Horan [16] and the list-rationalizable choice of Yildiz [32] are similar to our

model in that the DM in their models also performs pairwise comparisons along a

list. However, these papers assume a fixed but unknown order in which candidates are

evaluated, and they attempt to endogenously derive this order.89 Their choice domain

is unordered subsets of candidates, while we consider observations from ordered lists.

Furthermore, these papers consider underlying preference relations that are tourna-

ments, which are complete but not necessarily transitive binary relations. We have

however focused on incomplete but transitive relations.

The framework introduced in Rubinstein and Salant [28] is closely related to ours.10

These authors consider a DM whose underlying preference is a weak order, and who

8The sequentially rationalizable choice model of Manzini and Mariotti [22] is also related and has a similar
structure to these papers. The distinction is that their DM sequentially evaluates “rationales” (instead of
candidates), or multiple underlying preferences, to eliminate certain candidates.

9Caplin and Dean [8] and Masatlioglu and Nakajima [23] consider choice by search, a different kind of
dynamic choice procedure. They focus on deriving the search rule, while we take the ordering of candidates
as the natural search rule.

10The choice with frames model of Rubinstein and Salant [29] is more general. We are studying a specific
type of frame, that is, the ordering of candidates.
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uses the list to resolve indifferences by choosing either the first or the last most-preferred

candidate. Choosing the earliest maximal candidate is equivalent to satisficing in the

sense of Simon [31], which specifies a set A and dictates choosing the earliest candidate

that belongs to A. We note that satisficing is a special case of our model with status-

quo bias, when the DM’s true preference is such that yPx iff y ∈ A and x /∈ A.

Salant [30] presents a more general model of iterative choice from lists, not restrict-

ing attention to the amendment procedure.11 He proves that framing effects generally

exist, and he characterizes choice rules that exhibit optimal tradeoff between maximiz-

ing utility and minimizing computational complexity. By comparison, our DM exhibits

a specific form of framing effect: either the status-quo bias or the recency bias.

The recent paper of Guney [15] is closest to this work. She also considers the

amendment procedure, but she works with the larger domain of all lists over all subsets

of S. One of her main results is that the primacy axiom together with some other minor

conditions characterizes the choice behavior of a status-quo biased DM on this larger

domain. In contrast, the primacy axiom is not sufficient in our setting.12 Another

distinction is that in Guney’s model, choices from two-candidate lists are observed,

so that the DM’s preference can be perfectly identified from data. Working with the

smaller domain Π(S), we have shown that the analyst can robustly infer a revealed

preference, which is the minimal underlying preference that explains the data. Our

revealed preference method extends to more limited data sets (see Appendix C), where

the problem of identification and out-of-sample prediction becomes interesting and

nontrivial.

11A further generalization is obtained by considering a list as a special case of a decision tree, for example
see Mukherjee [26].

12We provide an example here for completeness. There are four candidates x, y, z, w. The DM chooses y if
he is the first candidate. Otherwise the DM follows the amendment procedure with the preference wQyQx
and zQx. The primacy axiom is satisfied, but these choices are not consistent with amendment voting.
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Appendix A: Proof of Theorem 1

For the sake of clarity, the proof is broken down into several claims.

Claim A.1. Let P ∗ be the revealed preference derived from the choice function c. If

P ∗ is a strict partial order and c(xyA) = c(yxA) whenever yP ∗x, then c = cP
∗
.

Proof. Fix a list π over S. Let x1 denote the first candidate in π, and for k ≥ 1 let

xk+1 denote the first candidate after xk in this list that is P ∗-preferred to xk. In this

way we can write π = x1A1x2A2 . . . xnAn, so that cP
∗
(π) = xn. Because any candidate

y in A1 is not P ∗-preferred to x1, moving y to the end of the list does not change the

DM’s choice by Condition II. Applying this observation to every candidate in A1, we

obtain

c(x1A1x2A2 . . . xnAn) = c(x1x2A2 . . . xnAnA1). (A.1)

But x2P
∗x1, so by assumption we have

c(x1x2A2 . . . xnAnA1) = c(x2x1A2 . . . xnAnA1) = c(x2A2 . . . xnAnx1A1), (A.2)

where the second equality follows because ¬x1P
∗x2 and Condition II. From Eq. (A.1)

and Eq. (A.2) we obtain c(x1A1x2A2 . . . xnAn) = c(x2A2 . . . xnAnx1A1). Repeating

this procedure, we can eventually derive

c(x1A1x2A2 . . . xnAn) = c(xnAnx1A1 . . . xn−1An−1). (A.3)

Let us show that no other candidate is P ∗-preferred to xn: this is because xn is P ∗-

preferred to xk and no candidate in Ak is P ∗-preferred to xk. Hence, by Condition I, the

final vote c(xnAnx1A1 . . . xn−1An−1) can only be xn. By Eq. (A.3), c(π) = xn = cP
∗
(π)

as we desire to show. �

Claim A.2. Let c = cP where P is a strict partial order, and P ∗ be its revealed

preference. Then yP ∗x implies yPx and c(xyA) = c(yxA) whenever yP ∗x.
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Proof. The first half has been proved in the main text, while the second half follows

from c = cP . �

Claim A.3. Let c = cP with P a strict partial order, then P ∗ is a strict partial order

as well.

Proof. Suppose P is asymmetric and transitive, we show that P ∗ has the same prop-

erties. Asymmetry follows from P ∗ ⊂ P . To prove transitivity, assume that zP ∗y and

yP ∗x. By P ∗ ⊂ P , we deduce zPyPx. The next lemma suffices to show that zP ∗x

must hold in this case. �

Lemma A.4. Let c = cP where P is a strict partial order, and P ∗ be its revealed

preference. If zPx but ¬zP ∗x, then for any y with ¬yPz, we have ¬yP ∗x.

Proof. Pick any list π = xyAzB, we will show that c(π) 6= y and moving y to any later

position does not alter the final vote. This would imply that neither Condition I nor

Condition II is satisfied, and so y would not be revealed-preferred to x.

Since z is not revealed-preferred to x, we deduce by Condition II that

c(xyAzB) = c(xzyAB). (A.4)

Using c = cP , zPx, ¬yPz, we further obtain

c(xzyAB) = cP (xzyAB) = cP (xzABy) = c(xzABy), (A.5)

In particular, we see that c(π) 6= y. Next, we use ¬zP ∗x and Condition II to deduce

c(xzABy) = c(xAzBy). (A.6)

The preceding three equations together imply that c(xyAzB) = c(xAzBy), so that

moving y to the end of the list does not affect the final vote. In fact, the same
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argument can be applied to move y to any position in the list, completing the proof.

�

Theorem 1 and Corollary 1 now follow from Claims A.1 to A.3. Next we show that

the results extend to interval-orders and semi-orders. It suffices to re-prove Claim A.3

for those cases:

Interval-orders: We need to show that P ∗(c) is an interval order whenever c = cP

where P is an interval-order. We already know that P ∗ is a strict partial order. Let

I∗ be the indifference relation associated with P ∗, it remains to check P ∗I∗P ∗ ⊂

P ∗. Thus assume wP ∗z, zI∗y, yP ∗x. Without loss we take these candidates to be

distinct, otherwise the result is trivial. Recall from Fn. 5 that P admits an interval

representation [u(x), u(x) + b(x)]. From wP ∗z we have wPz and u(w) > u(z) + b(z).

If u(y) ≥ u(w), then u(y) > u(z) + b(z) which yields yPz. Thus yPz but ¬yP ∗z, and

¬wPy because u(w) ≤ u(y). From Lemma A.4 we deduce that ¬wP ∗z, contradicting

our assumption.

Thus u(y) ≤ u(w), showing that ¬yPw. Furthermore, wPx because u(w) ≥ u(y) >

u(x) + b(x). If ¬wP ∗x, we would obtain from Lemma A.4 that ¬yP ∗x, another con-

tradiction. Hence wP ∗x must hold, and we have proved P ∗I∗P ∗ ⊂ P ∗ so that P ∗ is

an interval-order. �

Semi-orders: We already know that P ∗ is an interval-order. To show P ∗ is in fact a

semi-order, we need to check P ∗P ∗I∗ ⊂ P ∗. Thus assume wP ∗z, zP ∗y, yI∗x, where the

candidates are distinct. Let [u(x), u(x) + 1] be a representation for P . If u(x) ≥ u(z),

then from zPy and the interval representation, it holds that xPy. But from ¬xP ∗y,

¬zPx and Lemma A.4, we would deduce ¬zP ∗y, a contradiction. So u(z) > u(x). The

following lemma suffices to complete the proof.

Lemma A.5. Let P be a semi-order with interval representation [u(x), u(x)+1]. Sup-

pose wP ∗z and u(z) > u(x). Then wP ∗x also holds.

Proof. By assumption we have wPz. Thus u(w) > u(z) + 1 > u(x) + 1, which implies
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wPx. From wP ∗z, we know that either Condition I or Condition II is satisfied. If w

is the final vote in a list that begins with z, w must be a P -maximal candidate. Since

wPx, it follows that w is the final vote in any list that begins with xw. This yields

wP ∗x as we desire.

Suppose instead that Condition II is satisfied, so that for some A,B we have

c(zwAB) 6= c(zAwB). (A.7)

Note that the position of w affects the final vote. Define A1 = {y ∈ A : yPz}, where the

candidates are ordered in the same way as in A. Also define B1 = (A\A1) ∪ (B\{x}),

where order is again preserved. Because any candidate y ∈ A\A1 (and x) is not

P -preferred to z or w, its position in the list does not change the final vote. Thus

c(zwAB) = cP (zwAB) = cP (wzAB) = cP (wzA1B1x) = cP (xwzA1B1) = c(xwzA1B1)

(A.8)

The penultimate equality follows because wPx. Similarly we have

c(zAwB) = cP (zAwB) = cP (zA1wB1x) = cP (xzA1wB1) = c(xzA1wB1). (A.9)

Here, the penultimate equality follows because by definition, the first element in A1w

is P -preferred to z. It is thus P -preferred to x due to the interval representation and

u(z) > u(x).

From the preceding equations, we obtain that

c(xwzA1B1) = c(zwAB) 6= c(zAwB) = c(xzA1wB1). (A.10)

Hence by Condition II, we must have wP ∗x as desired. �
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Appendix B: Proof of Theorem 2

We will prove the following lemma, which implies the theorem.

Lemma B.1. Let c be a choice function generated by some strict partial order via the

amendment procedure (equivalently, the revealed preference P ∗ is a strict partial order

and c = cP
∗
). Suppose R is a strict partial order containing P ∗, such that for any yRx,

there exists a strict partial order Q with yQx and cQ = c. Then cR = c also holds.

Proof. Fix a list π. Because the binary relation R contains P ∗, the amendment pro-

cedure with preference R differs from the one with preference P ∗ only at those times

where the new candidate y is R-preferred but not P ∗-preferred to the current choice

x. We can write π as

π = A1y1A2y2 . . . AmymAm+1, (B.1)

with x1 = cR(A1) = cP
∗
(A1) and y1 is R-preferred but not P ∗-preferred to x1.13 For

2 ≤ k ≤ m+1, xk = cR(yk−1Ak) = cP
∗
(yk−1Ak); yk is R-preferred but not P ∗-preferred

to x1. Note that xk could be yk−1.

By construction,

cR(π) = xm+1 = cP
∗
(ymAm+1). (B.2)

Because ym = cR(A1y1 . . . Amym), it is R-maximal in the partial list A1y1 . . . Amym.

Since P ∗ ⊂ R, we deduce that ym is P ∗-maximal in this partial list and so

cP
∗
(ymAm+1) = cP

∗
(ymxmA1y1 . . . ym−1AmAm+1), (B.3)

where on the RHS xm need to be removed from the partial list ym−1Am.

Now we invoke the assumption that cP
∗

= cQ for some strict partial order Q with

13The choice function for the partial list A1 is given by Eq. (2.1).
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ymQxm. This tells us that

cP
∗
(ymxmA1y1 . . . AmAm+1) = cQ(ymxm . . . ) = cQ(xmym . . . ) = cP

∗
(xmymA1y1 . . . AmAm+1).

(B.4)

But xm = cP
∗
(ym−1Am), so we also have

cP
∗
(xmymA1y1 . . . AmAm+1) = cP

∗
(ym−1AmymA1y1 . . . Am−1Am+1). (B.5)

From the preceding equations, cP
∗
(ymAm+1) = cP

∗
(ym−1AmymA1y1 . . . Am−1Am+1).

We have thus successfully inserted ym−1Am before the candidate ym without changing

the final vote.

Next, we will move ym−2Am−1 to the beginning of the list. To do this, we note from

ym−1Rxm−1 that ¬xm−1P
∗ym−1. Condition II allows us to move xm−1 ∈ ym−2Am−1

to immediately after ym−1 in the list ym−1AmymA1y1 . . . Am−1Am+1. After that we

can switch the candidates ym−1 and xm−1 as in Eq. (B.4). We can then move the

remaining candidates in ym−2Am−1 to the front, as we did in Eq. (B.5).

Repeating this procedure, we derive that

cP
∗
(ym−1AmymA1y1 . . . Am−1Am+1) = cP

∗
(A1y1 . . . AmymAm+1) = cP

∗
(π). (B.6)

From Eq. (B.2)-(B.6), we conclude cR(π) = cP
∗
(π) as desired. �

Appendix C: Limited Data Sets

We have demonstrated the power of the revealed preference approach when the analyst

can observe the final votes from all lists. A natural question to pursue next is what

to do with less choice data, as is often the case in reality. As shown recently by

de Clippel and Rozen [9], extending choices from limited data sets is not always a

trivial exercise. This difficulty also appears in our setting, and we are not able to

completely characterize which (partial) choice functions can arise from the amendment
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procedure.14 Rather, we devote this section to discussing additional properties of the

choice function, and how they may be used to make out-of-sample predictions and/or

to identify the DM’s true preference.

Our analysis builds on the following proposition:

Proposition 3. Suppose c = cP for some strict partial order P . These axioms hold:

(Primacy). If x is the final vote from a list π, and π′ differs from π only in that the

position of x is moved earlier. Then x remains the final vote from the list π′.

(Switching). If yPx, then in any list where these two candidates are adjacent, switch-

ing their positions does not change the final vote.

Proof. The proofs of these axioms are similar to the proof of Proposition 1, so they

are omitted. �

The primacy axiom could be directly used to generate out-of-sample votes. In

contrast, the switching axiom depends on knowing the underlying preference P . Thus

in practice, one should instead apply this axiom with the revealed preference P ∗, which

is always included in P . Either way, these out-of-sample predictions provide additional

information from which one could derive extra revealed preference. The following

example illustrates this iterative procedure of eliciting the true preference:

Example 4.1: Let there be 5 candidates x, y, z, u, v. Suppose the analyst observe the

final votes from two lists: c(xyzvu) = u and c(xzyuv) = v. What can be inferred about

the DM’s true preference? Applying the revealed preference method, we could only

deduce that v and w are both revealed-preferred to x. Note that Condition II does not

yet have any bite. However, we could invoke the primacy axiom and deduce the out-of-

sample final vote that c(xyzuv) = u. At this stage we recognize the difference between

c(xyzuv) and c(xzyuv), allowing us to obtain by Condition II that both candidates y

and z are revealed-preferred to x.

So far we have shown that all candidates other than x are preferred to x. But that is

14Curiously, the revealed preference method we develop for a recency-biased DM completely solves the
identification problem for any data set. See Appendix D for details.
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not the end of the story. We could apply the switching axiom to c(xyzvu) = u and make

another out-of-sample prediction: c(yxzvu) = u. This then enables us to conclude

from Condition I that u is preferred to y. Similarly we could derive that v is revealed-

preferred to z, so that the revealed preference consists of uP ∗yP ∗x and vP ∗zP ∗x.

Since the observed choices do arise under the amendment procedure with this revealed

preference, we have successfully identified the DM’s underlying preference.15 �

Unfortunately, we are not always guaranteed to end up with a revealed preference

P ∗ that generates the observed final votes. In fact, when the data set is limited, there

may not exist a minimal preference relation that explains the data. We conclude with

such a negative example, leaving further study for future work.

Example 4.2: Consider 7 candidates x, y, z, y1, z1, u, v. The observed final votes are

c(xyzy1z1vu) = u and c(xzyz1y1uv) = v. One underlying preference that generates

these votes consists of uPyPx and vPzPx. By similar reasoning, the preference Q with

uQy1Qx and vQz1Qx also induces the same final votes. Nevertheless, the intersection

of these preferences only has v and w preferred to x, which is clearly not sufficient to

explain the observations.

Appendix D: The Model with Recency Bias

In this appendix we consider the variant of our model with recency bias: when the DM

cannot compare two candidates according to P , she favors the one who appears more

recently. The DM’s choice function is thus defined as follows:

c(x1) = x1;

c(x1x2 . . . xk) =


c(x1x2 . . . xk−1), if c(x1x2 . . . xk−1) is P -preferred to xk;

xk otherwise.

∀2 ≤ k ≤ n.

(D.1)

15Once again, the DM’s true preference P might be even richer than P ∗. But P ∗ is as much as we can
infer from the given data set.
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If P could be any binary relation, then this is equivalent to the original model upon

transforming the underlying preference. Specifically, if a choice function c is generated

by Eq. (2.1) with true preference P , then it is also generated by (D.1) with true

preference Q, where yQx if and only if ¬xPy. However, this equivalence breaks down

once we restrict attention to transitive preferences.

To distinguish from the notation for status-quo biased decision-makers, we will use

c̄P (with an upper-bar) to denote the choice function that arises from the recency-

biased amendment procedure (D.1). We will develop a different revealed preference by

the following condition:

Condition III: yP̄x iff in some list π where y precedes x, y is the final vote.

For a recency-biased DM, the revealed preference P̄ is always part of the true

preference P . Analogous to Theorem 1, our main result is that P ∗ can generate the

observed choices.

Theorem 3. Fix a choice function c : Π(S)→ S and define P̄ by Condition III. Then

c = c̄P for some strict partial order P iff P̄ is a strict partial order and c = c̄P̄ .

Proof. All proofs in this appendix can be found at the end.

We also have an analogue of Proposition 1 that characterizes which candidates are

ever chosen via the recency-biased amendment procedure.

Proposition 4. Let T be the smallest non-empty subset of S such that any candidate

in T is P̄ -preferred to every candidate in S\T .16 Then T is the set of candidates that

are ever chosen from some list, according to c̄P̄ .

We also have the following structural result regarding those underlying preferences

that generate the same choice function.

Proposition 5. Given a choice function c that arises from recency-biased amendment

voting. c = c̄P iff P̄ ⊂ P , and whenever yPx,¬yP̄x it holds that x, y ∈ S\T . As a

16Such subsets are closed under intersection, so there exists a smallest one.
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corollary, there is a unique possible true preference if and only if S\T is the empty set

or a singleton.

Our final result shows that a choice function cannot simultaneously exhibit status-

quo bias and recency bias except in trivial situations.

Proposition 6. Suppose c = cP = c̄Q for strict partial orders P and Q. Then ∃x ∈ S

such that c(π) = x,∀π.

Proof of Theorem 3: The “if” statement is trivial, so we focus on the “only if.” We

state a simple lemma that is useful in the analysis.

Lemma D.1. Let c = c̄P with a strict partial order P . In any list, the recency-biased

DM votes for the earliest candidate that is P -preferred to every later candidate. As a

corollary, if yPx, then changing the position of x does not affect whether or not y is

the final vote.

The first part of the lemma follows from transitivity. For the corollary, we argue

that in a list where y is the final vote, moving x does not change the fact that y is

P -preferred to every later candidate. Furthermore, any candidate z before y is still

P -worse than some later candidate — in case that candidate was x, we could as well

take y because yPz by transitivity.

Let us show that the revealed preference P̄ is also a strict partial order. Because

P is asymmetric and P̄ ⊂ P , P̄ is also asymmetric. To prove transitivity, we consider

three distinct candidates x, y, z with zP̄ y and yP̄x. By definition, zP̄ y implies there

exists a list π with c(π) = z. Moreover, as zPyPx, we can move x to after z in the list

π, without changing the fact that z is the final vote. Thus zP̄x as desired.

Next we show that c(π) = c̄P̄ (π). Fix a list π. It is without loss to write

π = x1A1x2A2 . . . xnAn, (D.2)
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where x1 is the first candidate, and for 1 ≤ k ≤ n − 1, xk+1 is the first candidate

after xk such that ¬xkP̄ xk+1. By construction, c̄P̄ (π) = xn. We thus need to show

c(π) = xn. We note that c(π) 6= xk(∀1 ≤ k ≤ n− 1) due to Condition III defining the

revealed preference. Furthermore, xk is P̄ -preferred to every candidate in Ak, so that

by transitivity no candidate in Ak can be P̄ -preferred to xk+1. This shows c(π) /∈ Ak.

Finally, note that xn is P̄ -preferred and thus P -preferred to every candidate in An. By

transitivity, we deduce that the candidate chosen from the partial list x1A1x2A2 . . . xn

must be P -preferred to xn and thus to every candidate in An. Hence c(π) /∈ An, which

proves c(π) = xn. �

Remark: with more limited data sets, the first part of this proof fails and we are

not guaranteed that P̄ defined by Condition III is transitive. However, the transitive

closure of P̄ is still included in the DM’s true preference. Since the second part of the

above proof goes through without change, we are able to achieve robust identification

of the DM’s preference for any given set of observations. This contrasts with the model

of a status-quo biased DM.

Proof of Proposition 4: We first show that for any list π, c(π) ∈ T . Since c(π) =

c̄P̄ (π), the earliest candidate in π that belongs to T must be chosen in the partial list

up to it, by the definition of T . Simple induction shows that afterwards, the DM only

keeps in mind a candidate in T .

Conversely, take z ∈ T , we will construct a list π in which z is the final vote. Define

V0 = {z}. For k ≥ 1 define Vk = {x ∈ S\ ∪k−1
j=0 Vj : ∃y ∈ Vk−1 with ¬xP̄y} .17 Finally

let V = ∪∞k=0Vk. By construction, any element in S\V must be P̄ -preferred to every

element in V . But S\V does not contain T because z ∈ V and z ∈ T . Thus by the

minimality of T , we deduce that S\V must be the empty set, so that V = S. Now

note that V0, V1, . . . are disjoint sets. So we can find a positive integer m such that

Vk = ∅ for k > m. Consider the list π = VmVm−1 . . . V0, where the ordering of those

candidates in any Vk can be arbitrary. As V = S, π is indeeda list over S. Moreover,

17The iterative definition corresponds to running a breath-first-search on an auxiliary directed graph.

21



by our construction, for any candidate x 6= z there exists some candidate y later in the

list such that ¬xP̄y. This implies that x cannot be the final vote, and we conclude

that c(π) = z. �

Proof of Proposition 5: Suppose P satisfies the assumptions. Take any list π. Let πT

be the partial list over T that preserves the ordering of these candidates in π. Because

any candidate in T is P -preferred to every candidate in S\T , it is straightforward to

see that c̄P (π) = c̄P (πT ). Similarly c̄P̄ (π) = c̄P̄ (πT ). But P and P̄ agree on T , so

c̄P (πT ) = c̄P̄ (πT ). It follows that c̄P (π) = c̄P̄ (π) as desired.

Conversely, suppose c̄P = c. We know that P̄ is included in P . Take any pair of

candidates x, y with yPx and ¬yP̄x. From Lemma D.1 above, y cannot be the final

vote in any list, otherwise we can move x to the end of that list and deduce yP̄x from

Condition III. Thus by Proposition 4, y does not belong to T . Since yPx, we deduce

from the definition of T that x /∈ T either. This completes the proof. �

Proof of Proposition 6: Take any list π and let c(π) = cP (π) = x. By the

primacy axiom, we can move x to the beginning of this list without changing the fact

that it is chosen. But c = c̄Q, so x is Q-preferred to every other candidate. Thus

c(σ) = c̄Q(σ) = x for every list σ. �
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