A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. These transformations include translations, rotations, dilations, and special conformal transformations, which are given by:

\[
p(z) = \frac{z - z_0}{z_0 - \bar{z}}
\]

where \(z_0\) is a complex number. A CFT is characterized by its central charge \(c\), which is related to the energy-momentum tensor by:

\[
T_{\mu\nu} = \frac{1}{2} \partial_{\mu} \partial_{\nu} \phi + \frac{c}{24} \left(\eta_{\mu\nu} \partial^2 \phi - \partial_{\lambda} \partial^\lambda \phi \right)
\]

where \(\phi\) is a scalar field. The central charge \(c\) is a non-negative integer, and it is related to the number of independent chiral primary fields. The Virasoro algebra is a central extension of the Lie algebra of the conformal group, and it is defined by:

\[
\left[L_n, L_m \right] = (n - m) L_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m,0}
\]

where \(L_n\) are the Virasoro generators. The \(c\)-function, also known as the \(c\)-number, is a function of the central charge, and it is given by:

\[
\tilde{c} = c - \frac{c(c+1)}{2}\]

For a critical model, the \(c\)-function is constant, and it is related to the number of primary fields by:

\[
\mathcal{O}(N) \quad \Rightarrow \quad c = \frac{6N}{(N+1)^2}
\]

where \(N\) is a non-negative integer. A critical model is a model with a critical point, and it is a model with a symmetry breaking transition. A critical model with \(N\) primary fields is described by a \(c\)-function, and it is a model with a \(c\)-function that is constant. A critical model is a model with a symmetry breaking transition, and it is a model with a \(c\)-function that is constant.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.

For a conformal field theory, the correlation functions are given by:

\[
\langle O_1(x_1) O_2(x_2) \rangle = \sum_{j} \frac{C_{12j}}{x_1 x_2} \langle O_j(x) \rangle
\]

where \(C_{12j}\) are the structure constants. The structure constants are given by:

\[
C_{12j} = \frac{1}{2} \int d^2 x \left(\partial x \right)^2 \left(\partial x \right)^j O_1(x) O_2(x)\]

where \(d^2 x \) is a two-dimensional volume form.