COSMIC DISTANCES

or, 'how far away is that thing anyway?'

SMA

- Angles are easy.
- Distances are hard.
- Parallax
- Standard Candle
- Red Shift

SMA

PARALLAX

$\mathrm{d}=\mathrm{b} / \tan \theta$
$\mathrm{d} \sim \mathrm{b} / \theta$ (theta in radians)
The bigger the baseline, the bigger the measured parallax angle θ.

We want a big baseline and we want to resolve very small angles.

We want a big baseline:

We want to resolve very small angles:

Resolution $20 \mu \mathrm{AS}$ (!)

SMA

STANDARD CANDLES

- They were a real thing for a while.
- The idea is simple (and that usually means good):

SMA

STANDARD CANDLES

- Standard Candles in space.
- Must be standard.
- Must be (very) bright.

SMA

STANDARD CANDLES

Also:Type la supernovae and others.

SMA

RED SHIFT

DOPPLER EFFECT

$$
\begin{aligned}
\frac{\Delta \lambda}{\lambda} & =\frac{v_{\text {object }}}{v_{\text {wave }}} \\
v_{\text {object }} & =v_{\text {wave }} \frac{\Delta \lambda}{\lambda}
\end{aligned}
$$

- Big Bang Recessional velocity is proportional to distance ($\mathbf{V}=\mathbf{c o n s t a n t ~ X ~ D) . ~ L e t ' s ~ c a l l ~ t h e ~ c o n s t a n t ~ ' ~} \mathbf{H}$ '.
- $\mathbf{D}=\mathbf{V} / \mathbf{H}$
- Measure $\Delta \lambda$, use Doppler equation to get \mathbf{V}.
- Solve for \mathbf{D} !

