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Abstract

How should forecasters be incentivized to acquire the most information when

learning takes place over time? We address this question in the context of a

novel dynamic mechanism design problem in which a designer incentivizes an

expert to learn by conditioning rewards on an event’s outcome and the expert’s

reports. Eliciting summarized advice at a terminal date maximizes informa-

tion acquisition if an informative signal either fully reveals the outcome or has

predictable content. Otherwise, richer reporting capabilities may be required.

Our findings shed light on incentive design for consultation and forecasting by

illustrating how learning dynamics shape the qualitative properties of effort-

maximizing contracts.
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1 Introduction

1.1 Overview

This paper asks whether adding complexity to a contract by making rewards sensitive

to the timing of reports can incentivize more information acquisition than simpler, time-

independent contracts. We ask this question in a minimal model where only a single predic-

tion is sought and there is no exogenous time pressure. We show that the answer depends

on whether incentivizing effort at one belief necessarily weakens incentives at another.

Specifically, we study a novel mechanism design problem that extends past work on

scoring rule design1 to a setting featuring dynamic acquisition of costly information. A

scoring rule is a contract that provides a reward—over which the agent has fixed value—

as a function of (i) the agent’s (reported) belief about the likelihood of an event and (ii)

that event’s outcome. While much past work studying scoring rules is concerned with

incentivizing forecasters to truthfully report information, we share a focus with a smaller

line of work on how to achieve this end as well as incentivize its acquisition.

A leading application of our work—and scoring rule design more generally—is to the

practical question of how to best incentivize forecasters. Forecasting takes a plethora of

forms, ranging from familiar (e.g., weather or economic outlooks) to predictions more

broadly (e.g., national security threat assessments or medical diagnoses). Our interest

is in situations where the event over which a forecast is sought is idiosyncratic. Thus, the

only way to obtain advice is via asking a forecaster to actively gather information, while

the forecaster cannot rely on passive knowledge to make an informed prediction.

The motivation for considering dynamic information acquisition together with forecaster

incentive design stems from the observation that active learning takes time. Consider, for

example, a decision maker hiring an analyst to conduct due diligence; e.g., before acquiring

a company or funding a startup. In this context, the analyst’s task is to forecast whether the

investment target will meet its promised outcomes, making this determination by analyzing

its complex financial records. In applications where this information is extensive and difficult

to interpret, it would be up to the analyst to decide when to stop looking for a red flag.

This timing decision makes the forecaster’s problem inherently dynamic.

We focus on the question of whether eliciting a single prediction, made after all informa-

tion is acquired, induces truthful reporting and maximizes incentives for information acqui-

sition. Our results clarify when more complex contracting capabilities are more conducive

to informed forecasts than simpler ones. Some relationships—such as when a consultant is

1This literature, starting with Brier (1950), considered how to evaluate (i.e., provide scores for)
weather forecasts. We review this work in more depth in Section 1.4.
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hired at arm’s length to report at a prespecified date—may limit the scope for reports to

be provided at any time. Closer relationships may enable continuous reporting, but could

introduce other costs. Our main results address whether such costs are worthwhile, as this

depends on whether dynamic reporting provides the strongest incentives.

1.2 Model Summary

In our model, an agent (forecaster) chooses privately—over time—whether to exert costly

effort to learn about an uncertain future binary event. We refer to the outcome of this

event as the state, and assume the initial prior over it is commonly known. We assume that

the private information of the agent, when exerting effort, arrives through a discretized

Poisson bandit process. This Poisson learning technology allows us to tractably capture

key qualitative features of dynamic information acquisition, enabling sharp comparisons

across contract designs despite the complexities stemming from the combination of dynamic

learning with a rich contracting space.2

When exerting effort, the agent may (privately) observe two kinds of signals, each (in

our main model) with fixed probability: (a) a “null signal” or (b) a “Poisson signal.” We

interpret a Poisson signal as some particular sought-after information—e.g., a red flag in

the due diligence application or an indication of an adversary’s capabilities in a national-

security context. In contrast to some related work, a Poisson signal in our model need not

reveal the outcome or suggest only one outcome. A red flag might narrow the set of failure

scenarios without confirming whether any will materialize; likewise, an intelligence analyst

might learn that an adversary has the capability to act on a given date without learning

their intentions. This structure is relevant to many expert-forecasting problems.

Past work on forecaster incentives has emphasized that a primary motivator is reputa-

tion (Marinovic et al., 2013). If the forecaster is employed by a decision maker, the latter’s

recommendation has a fixed value insofar as it shapes external perceptions. The afore-

mentioned literature on scoring rule design used this observation to note that the truthful

revelation of information could be incentivized by conditioning endorsements on predictions

together with realized outcomes. But such schemes can not only incentivize forecasters to

truthfully reveal their private information, but also to exert unobservable effort.3 In our

model, the designer’s contract specifies how to provide such an endorsement, modeled as a

2In particular, the agent’s continuation problem typically fails to be stationary for general con-
tracts. Much existing work on costly information acquisition relies on stationarity to obtain tractabil-
ity, requiring us to develop new techniques to analyze contract design in our setting.

3See Petropoulos et al. (2022) for a recent survey on forecasting, including a discussion of the
relevance of scoring rules for forecaster incentives. Gneiting and Raftery (2007) provides theoretical
background on scoring rules, while Frongillo and Waggoner (2023) provides a more recent survey.
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reward of fixed value (i.e., a score). The objective of the designer is to incentivize the agent

to acquire the most precise information by exerting maximum effort through the choice of

how such endorsements are provided.

To evaluate whether dynamic reporting provides the strongest incentives in a clean

manner, we keep the contracting environment otherwise identical between single-elicitation

and dynamic cases, except for the ability to receive reports from the agent at any time.

Given this, the designer’s problem in either contracting environment is to decide how to

provide the endorsement or recommendation as a function of (a) the forecaster’s static or

dynamic prediction and (b) the outcome that arises.

Note that a crucial feature of our model is that both effort and learning are private.

This reflects our interest in cases where the sought-after signal itself requires expertise to

recognize and interpret. In particular, the assumption of learning to be private separates

us from the literature on contracting for experimentation problems, where the latter model

allows contracts to increase rewards in later periods to incentivize continued effort. This

is not the case in our problem: with private learning, the agent can conceal or misreport

results, undermining any direct performance-based incentives.

The literature on contract design for forecasters has a much shorter tradition when

applied to dynamic settings. We share this focus with Deb et al. (2018) who study the design

of dynamic contracts to screen forecaster ability in the absence of moral hazard. While our

models make similar assumptions about the available contracts, the key difference is our

focus on dynamic moral hazard rather than initial adverse selection.

1.3 Results and Intuition

Our interest is in whether maximum effort can be implemented by a contract in which

the principal promises to give the forecaster the desired endorsement with a probability

depending on (i) a single belief report and (ii) the realized outcome. Such a contract is

static if the reward options offered to the agent do not depend on time in any way. The

challenge is that the incentives necessary to induce effort depend on the forecaster’s current

belief, and these belief-contingent incentive requirements generally conflict as beliefs evolve

over time.

We briefly describe why belief evolution creates a fundamental tension for incentive

provision—and why moving beyond static contracts could potentially help resolve this ten-

sion. Consider first a one-shot information acquisition problem, and notice that the scoring

rule that provides the greatest gain from effort typically depends on the prior. Intuitively,

if rewards place too much weight on the state that is currently more likely, an agent may

prefer to stop and report a favorable signal rather than exert effort; the agent may simi-

3



larly lack incentives to learn if rewards place insufficient weight on the initially less-likely

state. However, the same logic implies that the reward structure required for continued

effort flips once the agent becomes highly confident in the other state. Thus, rewards max-

imizing incentives at one belief can sharply reduce incentives at another, suggesting that

different rewards should be available at different times (and under different beliefs). While

this argument uses extreme beliefs to illustrate, the same issue arises throughout the belief

space. We present a more precise illustration of how effort-maximizing rewards should be

calibrated to the agent’s belief—and that the incentive constraints associated with different

beliefs place conflicting requirements on rewards—in Section 3.4.

Now, if beliefs in the dynamic setting were constant before a Poisson signal arrival—i.e.,

no information is conveyed by the failure to find a red (or green) flag—such adjustments

would clearly be unnecessary: the optimization problem is identical at every point in time.

We refer to this case as a Stationary environment and confirm that indeed static contracts

suffice then (Theorem 2). The aforementioned tension emerges when beliefs evolve over

time. As the agent becomes more confident in one state, should rewards in that state

decrease to maintain incentives? The answer turns out to be no in the following cases:

1. If a red (or green) flag reveals the future outcome perfectly: That is, a Perfect-learning

environment (Theorem 3) where signals fully reveal the state;

2. If only a red flag can arrive: That is, a Single-signal environment (Theorem 4) where

a Poisson signal arrival always moves beliefs in one direction.

Outside of these cases, dynamic reports may expand the set of strategies that an agent can

be induced to follow. We identify a set of parameters jointly violating these conditions for

which richer contracts are necessary (Theorem 5).4

Our key insight for perfect-learning and single-signal environments is that, despite belief

drift, adjusting rewards over time is counterproductive. Lowering rewards in increasingly-

likely states might seem to sharpen incentives at later beliefs. But doing so reduces the

agent’s continuation value from working, weakening earlier incentives. In these environ-

ments, any such time-varying contract can be replaced by a static scoring rule that provides

weakly stronger incentives at all times. However, when beliefs drift and signals can push

posteriors in either direction without fully revealing the state, conflicts arise that cannot be

resolved by static contracts alone.

Our unifying message is that the benefits from dynamic contracts require informative,

but imperfect, Poisson signals that can move beliefs in the same direction as the belief

4In particular, as we describe in Section 6, these parameters essentially amount to a “sufficient
violation” of the conditions of Theorems 3 and 4.
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drift absent signal arrival. For these signals, adjusting rewards over time can strengthen

incentives. In addition, the environment must feature sufficiently important dynamics. Sec-

tion OA 6 shows that static and dynamic implementations coincide with only two periods—

an agent cannot be incentivized to work for two periods by a dynamic contract if this is

impossible under a static contract. Our characterization in Theorems 2 to 4 is notable

because the conditions on the learning environment do not depend on the time horizon or

effort cost. The necessity of dynamic contracts emerges once the horizon is sufficiently long.

While our main focus is on whether a static implementation of the effort-maximizing con-

tract exists, we also provide several results characterizing optimal contracts more broadly.

Theorem 1 shows that contracts with decreasing reward structures implement maximum

effort—increasing rewards simply encourage the agent to “shirk and lie.” In general, effort-

maximizing contracts can be computed numerically via linear programming, as we describe

in Sections 3 and 4. But while this numerical procedure yields explicit solutions for effort-

maximizing contracts, it does not address our main question of when the unrestricted solu-

tion can be implemented as a scoring rule.

We lastly mention two further points that clarify how dynamics influence the design of

optimal contracts even in cases where a static implementation exists (Section 7.1). First, it

need not be the case that the effort-maximizing scoring rule provides the strongest incentives

at the prior, since incentives must be balanced as the agent’s belief changes, as alluded to

above. Second, the optimal scoring rule may require offering intermediate options that

provide strictly positive rewards even for incorrect predictions—contrasting with results for

static cases Li et al. (2022); Szalay (2005). This distinction reflects that beliefs evolve: an

option that is “intermediate” early may be “extreme” later. While our analysis also speaks

to other aspects of scoring rule design, we focus on the problem of static implementation as

this is a sharp, qualitative contract characteristic whose practical relevance is transparent.

1.4 Related Literature

Our paper joins a long line of work in economic theory asking how to incentivize information

acquisition or experimentation. A key theoretical novelty that arises in such settings is

the introduction of endogenous adverse selection since different effort choices (typically

themselves subject to moral hazard) will provide the agent with different beliefs over the

relevant state. This basic interaction, where an agent exerts effort under moral hazard to

acquire information, has been analyzed under varying assumptions regarding the underlying

information acquisition problem and contracting abilities.5

5For instance, static information acquisition technologies where information is acquired after con-
tracting (Krähmer and Strausz, 2011) or where the outcome of experimentation may be contractable
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As noted above, much of the literature on scoring rule design focuses exclusively on

the elicitation of information (see, for instance McCarthy (1956); Savage (1971); Lambert

(2022), as well as Chambers and Lambert (2021) for the dynamic setting). To the best

of our knowledge, Osband (1989) is the earliest work sharing our focus on the question

of incentivizing the acquisition of information. Other work relevant to the application of

forecasting is Elliott and Timmermann (2016), which reviews the statistical properties of

forecasting models. Aside from Deb et al. (2018), other papers focused on the problem

of screening forecasters include Deb et al. (2023); Dasgupta (2023). More recent work in

economics and computer science related to scoring rules include Häfner and Taylor (2022);

Zermeno (2011); Carroll (2019); Li et al. (2022); Neyman et al. (2021); Hartline et al. (2023);

Whitmeyer and Zhang (2023); Chen and Yu (2021); Bloedel and Segal (2024). Our main

point of departure from this line of work stems from our focus on dynamics.6

The Poisson information acquisition technology has been a workhorse for the analysis

of how to structure dynamic contracts for experimentation.7 Bergemann and Hege (1998,

2005) were early contributions studying a contracting problem under the assumption that

a “success” reveals the state. The subsequent literature has considered variations on this

basic environment (e.g., Hörner and Samuelson (2013) relaxes commitment; Halac et al.

(2016) allow for ex-ante adverse selection and transfers; Guo (2016) considers delegation

without transfers). The closest to our work is Gerardi and Maestri (2012), who assume a

Poisson arrival technology and, as in the scoring rule literature, allow for state-dependent

contracts. Our information acquisition technology generalizes this technology to allow for

Poisson signals that may support either state and be inconclusive. Our main message is

that dynamic contracts can outperform static scoring rules only under both modifications.

On this note, Poisson bandits have been extensively utilized in economic settings since

the influential work of Keller et al. (2005). An advantage of this framework is that it

facilitates qualitative, economically-substantive properties of information acquisition and

predicted behavior; a highly incomplete list of examples includes Strulovici (2010); Che and

Mierendorff (2019); Damiano et al. (2020); Keller and Rady (2015); Bardhi et al. (2024);

Lizzeri et al. (2024). Our exercise essentially amounts to designing a (possibly dynamic)

single-agent decision problem. Note that the agent’s problem need not admit a simple

(Yoder (2022), as well as Chade and Kovrijnykh (2016) in a repeated setting).
6While Neyman et al. (2021); Hartline et al. (2023) and Chen and Yu (2021) allow dynamic

information acquisition, all explicitly assume contracts must be static. Bloedel and Segal (2024)
study dynamic contracts, but their framework models dynamics across different agents, whereas our
model focuses on dynamics in which a single agent acquires information over time.

7McClellan (2022); Henry and Ottaviani (2019) consider related models where information acqui-
sition instead uses a Brownian motion technology, and an agent decides when to stop experimenting.
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stationary representation for arbitrary mechanisms in our framework.8 This contrasts with

most of the settings where payoffs are exogenous, in which case such stationarity may be

crucial for tractability. Partially for this reason, our approach does not require determining

the agent’s exact best response following an arbitrary dynamic contract.

2 Model

Our model considers an agent (who, depending on the application, may be an individual

expert or a team working as a single entity) as a forecaster. A mechanism designer shares

a common prior with the agent over an uncertain event θ ∈ Θ = {0, 1} (e.g., whether an

investment will achieve a certain target outcome, whether an adversary will attack on a

certain date, etc.); we let D denote the initial probability that θ = 1.

The agent is able to acquire information about θ at discrete times {1, 2, . . . , T}.9 We

refer to θ as the unknown state. This state is contractible and is only realized after time T

(e.g., a successful prototype or an attempted attack from the adversary). For conceptual

simplicity, we take T < ∞, and interpret T as the deadline for the designer to make a payoff

relevant decision regarding the unknown state (e.g., whether to invest in the company or

attack the adversary). The detailed decision environment plays no role in our analysis; we

assume only that the designer weakly prefers more information (a la Blackwell).

2.1 Information Acquisition

At any time t ≤ T , the agent can acquire information by paying a cost c > 0. When

this cost is paid, a piece of (falsifiable) evidence informative of θ may be discovered by the

agent with some probability. We refer to this evidence as a Poisson signal. We take the

arrival probability of the Poisson signal to be λθ. Without loss of generality, we assume

that λ1 ≥ λ0, so the agent’s belief drifts toward state 0 as no Poisson signal arrives.

If no Poisson signal arrives, the agent observes a null signal, which we denote by N .

If the agent does not exert effort, then a null signal is observed with a probability of 1.

When the Poisson signal arrives, various pieces of information may potentially be observed

by the agent, leading to different beliefs. Specifically, we denote the set of non-null signals

as S, and the agent observes a signal s ∈ S with probability λs
θ by exerting effort, where∑

s∈S λs
θ = λθ for all states θ ∈ {0, 1}. By Bayes’ rule, at any time t ∈ {1, . . . , T}, assuming

8Ball and Knoepfle (2024) study monitoring using a Poisson framework; while they allow bidi-
rectional signals, their design problem maintains recursivity, unlike ours.

9All of our results extend if we consider a variable time interval ∆ and take the high-frequency
limit as ∆ → 0.

7



that the agent has exerted effort for all periods until t, we let µN
t denote the posterior belief

that θ = 1 if no Poisson signal arrived before time t (including t), and let µs
t denote the

agent’s posterior when receiving Poisson signals s exactly at time t:

µN
t =

µN
t−1(1− λ1)

µN
t−1(1− λ1) + (1− µN

t−1)(1− λ0)
,

µs
t =

µN
t−1λ

s
1

µN
t−1λ

s
1 + (1− µN

t−1)λ
s
0

,

where µN
0 = D is the prior belief.

Once the Poisson signal arrives, no further information can be acquired (e.g., if a red

flag reveals the main point of concern so that additional scrutiny will not meaningfully alter

the assessment of the investment’s viability; if an adversary’s capabilities are determined,

no further information is relevant for assessing attack probability, etc.).10 Note that our

information acquisition technology generalizes Poisson bandit learning (as in Halac et al.

(2016), for instance), because signals (a) need not reveal the state and (b) can increase the

posterior probability of either state.

In addition, our main results on static contracts implementing maximal effort focus on

the following canonical cases of this model:

1. Stationary environments, where λ1 = λ0.

2. Perfect-learning environments, where either λs
0 = 0 or λs

1 = 0 for every s ∈ S.

3. Single-signal environments, where |S| = 1.

Intuitively, in stationary environments, the mere passage of time conveys no information:

silence (null signals) leaves beliefs unchanged, so only the content of an arriving non-null

signal can move the posterior. In perfect-learning environments, every non-null signal is

state-exclusive. Once any such signal arrives, the state is fully revealed. In single-signal

environments, there is only one kind of evidence; thus, when the signal arrives, it shifts

beliefs in a single direction, toward the state that more readily generates that signal. If

beliefs drift toward 0 when the Poisson signal does not arrive, they must jump toward 1

whenever it does in the single-signal environment.

10The assumption of a single-signal arrival represents an extreme case of information attrition
in Strulovici (2022), which discusses various compelling practical instances where the number of
available signals is naturally limited. In our case, this feature enhances tractability by allowing us
to associate the amount of information produced with the length of time the agent works absent the
arrival of a Poisson signal. It also avoids known complications in determining the agent’s payoffs
under Poisson learning when signals are not perfectly revealing.
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For expositional simplicity, we focus on the case of a binary set of Poisson signals (as in

much of the aforementioned dynamic contracting and experimentation literature):

S = {L,R}.

Here, the left-biased signal L moves beliefs toward 0, and the right-biased signal R moves

beliefs toward 1. This assumption captures the most important quantitative feature of

information for our analysis—the direction in which a signal shifts the agent’s posterior—

while maintaining tractability. Our results extend naturally to more general signal sets

without changing the qualitative insights.

To reiterate, effort choices and signal arrivals are private information of the agent.

The assumption that this signal is private reflects the notion that it requires expertise

to recognize and interpret. Moreover, the signals are not verifiable and, hence, can be

arbitrarily fabricated or misrepresented by the agent at no cost. The assumption that effort

is private reflects the notion that the principal cannot easily monitor the agent’s activity.

2.2 Contracting

We will focus on a menu representation of dynamic contracts for incentivizing the agent to

exert costly effort.11 Specifically, the designer offers the agent a menu of rewards

M := {Mt ⊆ [0, 1]2}Tt=1.

At any time t ≤ T , if the agent picks a reward profile rt = (rt,0, rt,1) ∈ Mt, the agent

receives a reward of rt,θ after time T when the state θ is publicly revealed. As mentioned

in the introduction, we can also interpret the reward as the probability of receiving an

endorsement that positively influences the forecaster’s reputation. Such reward bounds are

also widely assumed in the literature on evaluating forecasters (e.g., Deb et al., 2018), as

well as in the literature on information elicitation more generally.12 Note that a crucial

feature of this menu representation is that the agent only makes one irrevocable choice

for the reward vectors. This is without loss of generality since we have assumed that the

11A more general format based on arbitrary communication and its equivalence to our menu
representation is provided in Section OA 2.2.

12While we interpret the reward as non-monetary, our model also applies to applications where
the designer faces explicit budget constraints set by a third party. Anthony et al. (2007) discusses
firms imposing budget constraints on different divisions; National meteorological agencies, such as
the U.S. National Weather Service (NWS) receive public funding for operations; the Congressional
Budget Office (CBO) operates under a fixed annual budget and provides forecasts for Congress. In
such cases, designers are restricted to using this budget to incentivize information acquisition.
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Poisson signals can arrive at most once over the entire time horizon.

We assume that the agent does not discount the future.13 That is, by exerting effort

for Z periods and receiving a reward of r ∈ [0, 1] in the end, the utility of the agent is

r − cZ.

Given a menu M, let ZM denote the number of periods the agent would exert effort

in the absence of a Poisson signal.14 In our Poisson learning environment, the induced

experiment (the distribution over posteriors) is uniquely determined by ZM. Moreover, a

larger ZM yields Blackwell more informative signals. Therefore, the designer’s problem is

M∗ ∈ argmax
M

ZM.

2.3 Static Implementation

Since the agent’s signal is private, the designer cannot compel early selection: at any date

t, the agent can guarantee himself access to any reward that will appear in the future

simply by waiting. In our notation, at date t, the agent’s feasible set implicitly includes all

rewards from any later menu Mt′ with t′ > t. Without loss of generality, we can restrict

attention to weakly shrinking menus and replace any profile (Mt)
T
t=1 with its right-closure

M̃t :=
⋃

s≥tMs, which satisfies

M̃t ⊇ M̃t′ for all 1 ≤ t ≤ t′ ≤ T, (1)

and leaves the agent’s feasible choices at every time period unchanged.

In light of this nested (weakly shrinking) structure of dynamic contracts, we now ask

whether time variation is necessary at all, or if a single, time-invariant menu maximizes

effort. The next definition formalizes this possibility, which we call a static implementation.

Definition 1 (Static Implementation).

An optimal menu M has a static implementation if there exists M̂ such that τM̂ = τM and

M̂t = M̂t′ , for any 1 ≤ t ≤ t′ ≤ T.

Under a static implementation, the designer does not need to monitor the exact time at

13We discuss the extensions with discounted utilities in Section 7.2.
14We do not obtain a closed form for ZM, as the best response strategy of the agent can poten-

tially be complex given an arbitrary menu M. We will provide a more transparent description in
Section 3.1 when we simplify the best response strategies of the agent.
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which the agent observes the Poisson signal to incentivize maximum effort. Given a menu

with a static implementation, the agent can defer the choice to time T and select the

reward based on the aggregated information acquired over the entire process. Under a

static implementation, advice is summarized at the end of the interaction.

Using terminology from the information elicitation literature, a static implementation

essentially offers a scoring rule at time T : Specifically, a scoring rule

P : ∆(Θ)×Θ → [0, 1]

maps the agent’s report—which is required to take the form of a posterior belief—and the

realized state to a reward. Scoring rules are far simpler than arbitrary dynamic menus: they

require only a summary (in the form of a belief report) rather than real-time monitoring and

time-varying rewards. In contrast, richer dynamic contracts may require closer integration

within the decision-maker’s organization. Our goal is to characterize whether unrestricted

dynamic contracting is necessary to incentivize maximum information acquisition:

Main Question: Does the effort maximizing menu have a static implementation?

3 Structures of Dynamic Incentives

Before answering our main question, we provide some useful results that help us formulate

the approach we take. Section 3.4 provides some additional discussion and intuition.

3.1 Stopping Strategies

The agent’s information acquisition strategy can be arbitrary and complex in dynamic

environments. But in our model, it is without loss of generality for the agent to front-load

all effort and adopt a stopping strategy—i.e., a strategy in which the agent simply decides

when to stop working in the absence of a Poisson signal arrival (exerting effort until then).

More precisely, let σ denote the (random) time of the first Poisson signal (with σ = ∞
if no such signal arrives). A stopping strategy with stopping time τ ≤ T prescribes effort at

any time period t ≤ min{τ, σ} and no effort thereafter: effort ceases after the first occurrence

of a Poisson signal or {t = τ}. Slightly abusing notation, we also use τ to represent the

stopping strategy with a stopping time τ . Let τM be the stopping strategy implemented

under the menu M.15

15We break ties by maximizing the stopping time if there are multiple stopping strategies.
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Lemma 1 (Stopping Strategies are Without Loss).

Given any menu of rewards M and any best response of the agent with maximum effort

length ZM conditional on not receiving any Poisson signal,16 there exists a stopping strat-

egy τM with τM ≥ ZM that is also optimal for the agent.

The proof of Lemma 1 is simple. Indeed, since information is private, the agent can

always remain silent about Poisson signal arrivals until later periods. Furthermore, the

agent does not learn when not exerting effort. So, if the agent were to deviate by working

earlier when a strategy had prescribed him not to have done so, he could still replicate

any outcome that might have emerged under that strategy. The converse, however, is not

necessarily true, since past choices cannot be undone. The Lemma follows from considering

a modification in which the agent exerts effort for the same amount of time but front-loads

effort. While the gain from front-loading depends on the contract, the agent incurs the

same cost while ensuring a weakly larger reward.

Given Lemma 1, the designer’s problem reduces to

M∗ ∈ argmax
M

τM.

3.2 Optimal Menu of Rewards

Since it is without loss of generality to consider menus with a shrinking choice set (see

Equation (1)), it is in the agent’s best interest to select a reward from the available menu

immediately once he hits his stopping time in a stopping strategy, i.e., when he receives a

Poisson signal or decides not to exert effort anymore.

Given any menu, the designer can infer the posterior belief of the agent based on his

choice of rewards. Moreover, only rewards that maximize the on-path beliefs can be chosen.

Specifically, at any time t, for any Poisson signal s ∈ S, let rst ∈ Mt be the reward vector

chosen by the agent at time t when his belief is µs
t . Moreover, let rNτM be the reward vector

chosen by the agent at stopping time τM when his belief is µN
τM . Any rewards beyond the

collection of {rst }t≤τM,s∈S∪{rNτM} will never be chosen by the agent. Let u(µ, r) ≜ Eθ∼µ[r(θ)]

denote the agent’s expected utility with belief µ under the reward function r.

Lemma 2 (Simplified Menu Representation).

Given any menu M implementing stopping time τM, let {rst }t≤τM,s∈S ∪{rNτM} be the collec-

tion of rewards chosen by the agent at some on-path history. At any t ≤ τM, it is equivalent

16If the agent randomizes, we let ZM denote the maximum effort length among all realizations.
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to offer a menu Mt ≜ {rst′}t≤t′≤τM,s∈S ∪ {rNτM} to the agent such that

rst ∈ argmax
r∈Mt

u(µs
t , r), ∀s ∈ S. (IC)

In essence, Lemma 2 is the relevant version of the taxation principle for our environment.

For any time t and any Poisson signal s ∈ S, we denote ust (M) ≜ u(µs
t , r

s
t ) as the

agent’s expected utility if they cease effort entirely after t with belief µs
t . Similarly, we let

uNt (M) ≜ u(µN
t , rNt ) where rNt ∈ argmaxr∈Mt

u(µN
t , r). We omit reference to M in the

notation when clear from context.

Theorem 1 (Effort-Maximizing Dynamic Contracts).

For any prior D and any signal arrival rates λ, there exists an effort-maximizing menu M
with optimal stopping time τM and a sequence of menu options {rst }t≤τM,s∈S ∪ {rNτM} with

rNτM = rLτM such that

1. decreasing rewards for signal L: rLt′,θ ≤ rLt,θ for all t′ ≥ t and θ ∈ {0, 1}; and rLt,0 = 1

if rLt,1 > 0;

2. maximal rewards for signal R: for any t ≤ τM,

rRt = argmax
r:Θ→[0,1]

u(µR
t , r)

s.t. u(µN
t′ , r

L
t′ ) ≥ u(µN

t′ , r), ∀t′ ∈ [0, t].

Compared to the menu representation in Lemma 2, the simplification in Theorem 1 is that

effort-maximizing contracts involve a decreasing sequence of rewards when receiving a left

biased signal L in both states. In fact, rewards following L decrease first in state 1, and

subsequently in state 0 once the reward in state 1 hits 0. Furthermore, the rewards for right-

biased signals are uniquely determined based on the rewards for left-biased signals. Note

that the rewards for left-biased signals are only weakly decreasing. Indeed, the theorem

covers cases where our main theorems imply that the effort-maximizing contract is attained

by keeping the rewards rLt unchanged over time.

The intuition for why it is not feasible to increase rewards over time follows the reasoning

described in the introduction: if the agent expects higher rewards later, he may shirk

immediately and falsely claim signals later (“shirk-and-lie”). Alternatively, he could defer

reporting a signal that arrives early to enjoy future rewards. This capability drives the

restrictions in the first part of Theorem 1.

Why might decreasing rewards be helpful for effort maximization? If the agent exerts

effort at t and observes a null signal, his belief decreases from µN
t to µN

t+1. As a result, the

13



menu options that provide a higher reward in state 0 become more enticing to the agent,

and the value of additional information decreases as the agent becomes more certain about

choosing those options with high rewards in state 0. By decreasing the reward of 0 in those

options at time t+1, the agent becomes uncertain again about the best menu choice. This

increases his value of information and incentives for exerting effort.

3.3 Continuation Games and Effort Incentives

We introduce a notion that allows us to describe the incentives for exerting effort at a given

time. Specifically, we decompose the dynamic problem into a sequence of static problems.

Each static problem, in turn, considers the relevant continuation incentives of the agent

under the dynamic contract.

Each static game in our decomposition is indexed by a pair of times, t ≤ t′ ≤ T , as

well as a menu of rewards M. We define the continuation game between t and t′, denoted

GM
t,t′ , as the static decision problem with prior belief µN

t−1 where the agent makes a one-time

binary effort choice at time t: (a) Exert no effort or (b) Exert effort up to and including

time t′ or until a Poisson signal arrives. We let C(t, t′, c) denote the cost of option (b) in the

continuation game between t and t′ when the cost of effort in each period is c. Letting f s
t (t

′)

be the probability of receiving Poisson signal s at time t′ conditional on not receiving Poisson

signals before time t, and letting F s
t (t

′) be the corresponding cumulative probability:

C(t, t′, c) =

(
1−

∑
s∈S

F s
t (t

′)

)
· c · (t′ − t+ 1) +

t′∑
t̂=t

∑
s∈S

fs
t (t̂) · c · (t̂− t+ 1).

Indeed, this formula is simply the expected total cost of exerting effort from time t until

the earlier of t′ or the first Poisson signal arrival.

An important special case is when the time t′ is itself the stopping time for the menu M,

with τM ≤ T . In this case, we say GM
t,τM is the continuation game at time t for menu M. In

what follows, we omit the superscript of M when it is clear from context. Note that given

any menu of rewards M with stopping time τM, at any time t ≤ T , it is straightforward to

show that the following are equivalent:

1. t ≤ τM, i.e., the agent has an incentive to exert effort at time t in this dynamic

environment;

2. there exists t′ ≥ t such that the agent has an incentive to exert effort in the continu-

ation game Gt,t′ (corresponding to some feasible continuation under M).
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When t ≤ τM, a feasible choice of t′ ≥ t that ensures sufficient effort incentives in the

continuation game is t′ = τM, as this is consistent with the agent playing a best response.

The bottom line is that to design a menu of rewards that implements any τ ≤ T , it

suffices to ensure that the agent has an incentive to exert effort in continuation games Gt,τ

for all t < τ . Now, fixing c and the desired stopping time τ , there typically will exist multiple

effort maximizing contracts, as incentives could be slack given the cost c. An alternative

is to consider an auxiliary problem of maximizing effort incentives. We describe formally

what maximizing effort incentives means: given any continuation game Gt,t′ , let ∆(Gt,t′) be

the difference in expected reward between exerting effort and not exerting effort. That is,

∆(Gt,t′) =

(
1−

∑
s∈S

F s
t (t

′)

)
· u(µN

t′ , r
N
t′ ) +

t′∑
t̂=t

∑
s∈S

fs
t (t̂) · u(µs

t̂
, rs

t̂
)− u(µN

t−1, r
N
t−1).

Note that the last term u(µN
t−1, r

N
t−1) is the agent’s utility for not exerting effort in the con-

tinuation game Gt,t′ . The index in this term is t−1 since the prior belief in this continuation

game is µN
t−1, and if the agent decides not to exert effort from t onward, the agent could

actually make the report at time t−1 to get his favorite reward option rNt−1. Thus, the agent

has an incentive to exert effort in the continuation game G if and only if ∆(Gt,t′) ≥ C(t, t′, c).

Translating this to dynamic environments, given any menu M, the agent has an incentive

to exert effort if ∆(Gt,τM) ≥ C(t, τM, c) at any time t ≤ τM. Thus, effort incentives are

maximized if the difference in expected rewards between exerting effort and not exerting

effort is as large as possible, so that the agent would work as long as possible for any c.

3.4 Discussions and Intuitions

An auxiliary perspective on effort incentives The design of the optimal menu

can be reduced to the problem of maximizing the effort incentive for all continuation games

before the stopping time. More concretely, for any stopping time τ ≤ T , we can solve the

following linear program:

cτ := max
M,c̃

c̃ (Effort Maximization)

s.t. ∆(GM
t,τ ) ≥ C(t, τ, c̃), ∀t ≤ τ.

M satisfies (IC) constraints.

If cτ ≥ c, there exists a reward menu that implements the stopping time τ . Otherwise,

stopping time τ cannot be implemented by any menu of rewards. To find the optimal

menu, we can enumerate all τ ≤ T and identify the largest τ∗ such that cτ∗ ≥ c. The
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Figure 1: Expected score UP (µ) of a V-shaped scoring rule P with parameters r0, r1.

reward menu implementing τ∗ is an optimal menu.

Optimal menu for continuation games We first consider the design of the optimal

menu that maximizes the reward difference in the continuation game given a pair of time

t ≤ τ . In such static environments, this is essentially the optimization of the scoring rules,

which is fully characterized in Li et al. (2022).

Definition 2 (V-shaped Scoring Rules).

A scoring rule P is V-shaped with parameters r0, r1 if

P (µ, θ) =


r1 µ ≥ r0

r1+r0
and θ = 1

r0 µ < r0
r1+r0

and θ = 0

0 otherwise.

We say P is a V-shaped scoring rule with a kink at µ̂ ∈ [0, 1] if the parameters r0, r1 satisfy

r0 = 1, r1 =
1−µ̂
µ̂ if µ̂ ≥ 1

2 and r0 =
µ̂

1−µ̂ , r1 = 1 if µ̂ < 1
2 .

The terminology of the scoring rule as “V-shaped” comes from the property that the

expected score UP (µ) ≜ Eθ∼µ[P (µ, θ)] is a V-shaped function, which is illustrated in Fig-

ure 1. Furthermore, given any V-shaped scoring rule P with a kink at D, the agent with

prior belief D is indifferent between reward options (r0, 0) and (0, r1).

Proposition 1 (Li et al., 2022). For any t ≤ τ , the reward menu offering the V-shaped

scoring rule in all periods maximizes the reward difference in continuation game Gt,τ .

Intuitively, V-shaped scoring rules maximize the expected reward at all posteriors, sub-

ject to (a) the constraint that the indirect utility is convex (as a consequence of incentive
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compatibility) and (b) the expected reward at the prior being constant (so that incentives

for the agent to exert effort are maximized). For any fixed information structure, adding

curvature to the indirect utility in Figure 1 would only decrease the agent’s expected util-

ity under that information structure, diminishing effort incentives. And moving the kink

increases the payoff from not exerting effort by more than the payoff from exerting effort.

Dynamic effort incentives Proposition 1 illustrates the tensions involved in designing

the optimal menu in dynamic environments. As the agent’s posterior evolves over time, the

priors of the continuation games at different time periods vary, leading to inconsistencies in

the scoring rules that maximize incentives for effort across time. In particular, to implement

maximum effort in dynamic environments, the moral hazard constraints bind at both time 1

and the stopping time τ when the signals are perfectly revealing. A V-shaped scoring rule

with a kink at µN
τ would yield insufficient incentives for the agent to exert effort at time 0,

preventing the agent from working in the first place. Conversely, a V-shaped scoring rule

with a kink at µN
0 results in insufficient incentives for the agent to exert effort at time τ ,

causing the agent to stop prematurely. To balance the incentives for exerting effort across

different time periods, the V-shaped scoring rule may need a kink located at some interior

belief. Moreover, as we will discuss, the optimal scoring rule need not always take a V-

shaped form to provide balanced incentives in dynamic environments.

Comparison to contracts for experimentation In standard experimentation mod-

els with publicly observed outputs (e.g., Halac et al., 2016), the principal can condition

rewards on outputs, potentially increasing rewards over time to offset rising effort costs.

In our setting, this approach is infeasible: an agent with favorable early “outputs” (i.e.,

Poisson signals) could strategically withhold information to claim higher rewards later. In-

stead, to strengthen incentives for continued effort, the optimal dynamic contract decreases

rewards over time. This reduction in rewards is beneficial because it minimizes the agent’s

utility from stopping early, thereby encouraging continued effort. On top of this, the arrival

of “output” yields private information for the agent. This additional endogenous private

information creates an extra complication in our model.

4 Numerical Illustrations

Note that since the optimization program (Effort Maximization) is a linear program for

any τ ≤ T , it suggests a general method for how to numerically find an optimal menu by

applying standard linear programming algorithms. The solution to the linear program not

17



■
■

■

■

■ ■ ■ ■ ■ ■

▲ ▲ ▲ ▲ ▲

▲

▲
▲

▲ ▲

■ Reward in State 1

▲ Reward in State 0

0.0

0.2

0.4

0.6

0.8

1.0

Reporting Signal L, Dynamic Contract

Time

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲ ▲

■ ■ ■ ■ ■ ■ ■ ■

■ ■

▲ Reward in State 1

■ Reward in State 0

0.0

0.2

0.4

0.6

0.8

1.0

Reporting Signal R, Dynamic Contract

Time

Figure 2: Solution to the linear program for the effort maximizing contract with 10 periods,
allowing for reporting at any time—i.e., unrestricted advice. The parameters are chosen as λR

1 =
1/3, λL

1 = λR
0 = 1/10, λL

0 = 1/5, D = 2/3.

only tells us how high c can be, but also identifies a particular contract that can implement

efforts for τ periods given this c.

Figure 2 presents a solution for certain representative parameter values. We compute

the optimal menu for implementing a stopping time τ = 10. The left side of Figure 2

illustrates the decreasing reward structure in the optimal menu characterized in Theorem 1:

rewards following L signals are first decreasing for state 1, then decreasing for state 0 after

their rewards for state 1 hit 0. Moreover, the realized rewards following R signals are not

necessarily decreasing over time in all states; in particular, rewards in state 0 may increase

over time, although due to incentive compatibility, such an increase in rewards in state 0

implies a decrease in rewards in state 1.

We now describe how to modify the linear program to restrict it to static contracts.

Notice that the optimal dynamic menu allows the principal to discriminate over time: An

agent who observes signal s at time t cannot choose the reward function that would have

been selected had that signal arrived at time t′ < t. Such deviations are possible un-

der single-elicitation mechanisms. Therefore, the incentive compatibility constraints in the

static mechanisms would instead require that for any t ≤ τM,

rst ∈ argmax
r∈M0

u(µs
t , r), ∀s ∈ S. (Static-IC)

By replacing the (IC) with (Static-IC) in (Effort Maximization), we obtain the linear pro-

gram for optimization over scoring rules in this dynamic environment.

We illustrate the solution to this linear program in Figure 3. Here, the different rewards

correspond to what the agent would optimally select from the same menu if the signal

were to arrive at that time, even though all reports are made after time 10. A notable
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Figure 3: Solution to the linear program for the effort maximizing contract with 10 periods,
assuming that the contract involves a single elicitation at time 10—i.e., summarized advice. Note
that while time is illustrated, any reward can be selected at any time, and the rewards presented are
those selected consistent with incentive compatibility. The parameters are chosen as λR

1 = 1/3, λL
1 =

λR
0 = 1/10, λL

0 = 1/5, D = 2/3.

feature is that the rewards in state 0 following signal L are increasing over time, rather

than decreasing as in the dynamic case. Intuitively, the dynamic contract in Figure 2 uses a

relatively high early reward in state 0 after L to encourage the agent to begin working, and

then lowers it over time; however, under static contracts, this front-loading would violate

incentive compatibility because an agent who worked longer would prefer to “backdate” his

report and pick that generous early L reward. To prevent such profitable backdating, the

optimal static menu instead makes various offers at the same time, and the agent receiving

a L signal at a later time would be more certain of the state being 0, selecting a reward

option with a higher reward for state 0. Dynamic elicitation avoids this tension because the

contract available at time t is not available at later times, so the principal can start with

high incentives and taper them without creating incentives to mimic earlier types.

These computations show that a contract implementing maximum effort among static

contracts can be qualitatively quite different from those that can resort to dynamic elici-

tation. The linear programs further identify a range of costs such that the principal can

implement effort up to time 10 under a dynamic contract, but not using static elicitation

(specifically, whenever 0.041 ≤ c ≤ 0.049). For this range of cost parameters, dynamic elic-

itation enables the principal to incentivize strictly more effort. Our main results show that

no gap arises in the single-signal, stationary, or perfectly revealing environments. Crucially,

the parameters for these solutions do not fit under any of these environments.

One natural way to try to prove the sufficiency of summarized advice would be to show

that the constraints added to (Static-IC) do not bind under these assumptions. Unfortu-

nately, to our knowledge, there is no clear way to determine which constraints will bind at

which time given the properties of the linear program alone. Thus, while the numerical cal-
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culation shows how to identify effort maximizing contracts given an information acquisition

technology, they seem of limited use for our main question. Still, the illustrations do show

that some condition is necessary for static contracting to implement maximum effort.

Hence, the exercise motivates us to adopt different techniques to determine the qualita-

tive properties of such contracts. The message we deliver is that the existence of a gap in

this numerical example is attributable to the existence of noisy L realizations.

5 Implementing Maximum Effort via Scoring Rules

We now show that scoring rules implement maximum effort in the three environments

highlighted in Section 2.1: stationary, perfect-learning, and single-signal.

The central challenge is that different beliefs require different reward options to max-

imize incentives for exerting effort. As the agent works without receiving a signal, his

no-information belief µN
t drifts toward 0. When µN

t is close to 1, strong rewards for report-

ing θ = 1 weaken effort incentives—so the agent would exert effort only if c is small. When

µN
t approaches 0, the situation reverses: strong rewards for reporting θ = 1 are necessary

to encourage the agent to keep working. Effort-maximizing contracts balance the incentives

across different periods as the posterior belief drifts from close to 1 to close to 0.

We demonstrate the sufficiency of static elicitation constructively: starting from any

dynamic contract, we identify a static contract such that the agent’s incentives for exerting

effort are preserved in all continuation games. Anticipating Section 6, the “problematic”

beliefs that require dynamic contracts for incentivizing effort arise when the agent obtains

an imperfectly informative L signal. Section 5.2 illustrates why the principal should never

withhold rewards following a perfect L signal; in particular, maximizing rewards at every

time implies that these rewards should be made constant. Section 5.3 shows that the prin-

cipal can convexify the agent’s no-information utility to establish a static implementation

when a L signal is absent. While details differ across environments, the unifying principle

is that, under these learning technologies, the structure of beliefs is sufficiently constrained

to allow rewards to be adjusted in a way that renders the contract effectively static, thus

managing the tension between providing incentives in early and late periods.

5.1 Stationary Environment

In the stationary environment, the agent’s belief never changes in the absence of Poisson

signals: µN
t = D for all t ≤ T . This removes any intertemporal tension.
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Theorem 2 (Stationary Environment).

In the stationary environment, a V-shaped scoring rule with kink at D is effort-maximizing.

Proposition 1 implies that for any continuation game, the effort-maximizing reward

depends only on the current belief. Since this belief is constant across time, the same V-

shaped rule simultaneously maximizes incentives everywhere. There is no conflict between

the incentives at date 0 and those at date T (or any date in between).

The more subtle cases arise when beliefs drift as the agent exerts effort. In those cases,

the optimal scoring rule may not take the form of a V-shape with a kink at the prior,

reflecting a compromise between early-period incentives (where beliefs are near D) and

late-period incentives (where beliefs approach µN
τ ).

5.2 Perfect-learning Environment

When signals fully reveal the state, the sufficiency of scoring rules is less immediate.17

Theorem 3 (Perfect-learning Environment).

In the perfect-learning environment, a V-shaped scoring rule with parameters r0 = 1, r1 ∈
(0, 1] (and hence, a kink at 1

1+r1
∈ [1/2, 1)) implements maximum effort.

A key feature of perfect learning is that once a signal arrives, the problem ends: the agent

becomes certain of the state. Thus, the only interior beliefs are those at which the agent

has not observed any informative signal. This greatly simplifies the structure, as offering

rewards in both states can only weaken incentives: it is without loss to give rewards only

in the state the agent believes is more likely.

The proof follows two steps, each replacing part of an arbitrary dynamic contract with

another contract that (weakly) strengthens effort incentives.

Step One: Maximizing rewards in state 0. The first step is to show that the principal

should always maximize the reward for the state realization of 0 when a left-biased signal L

is observed or no Poisson signal ever arrives.

To see why, fix an optimal contract implementing stopping time τM, and consider the

agent’s decision in the period τM. Since the agent will stop working in the next period

whether or not a Poisson signal is observed, the agent’s final payoff depends only on the

signal observed in that period. His payoff from exerting effort at time τM is therefore:

−c+ (1− µN
τM−1)(λ

L
0 r

L
τM,0 + (1− λL

0 )r
N
τM,0) + µN

τM−1λ
R
1 r

R
τM,1

17This setting generalizes perfect-learning technologies from past work by allowing signals to
potentially reveal either state.
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Figure 4: Illustration of the second step of the proof of Theorem 3

Since rewards are decreasing over time by Theorem 1, and since the agent can always select

the largest available reward, this expression is equal to:

−c+ (1− µN
τM−1)r

L
τM,0 + µN

τM−1λ
R
1 r

R
τM,1 (2)

But stopping immediately and reporting 0, without exerting any effort at all, yields a payoff:

(1− µN
τM−1)r

L
τM−1,0 (3)

Taking the difference between (2) and (3) reveals that exerting effort is more favorable when

rLτM,0 − rLτM−1,0 is larger. Since rLτM,0 ≤ rLτM−1,0, raising both rewards—up to 1—can only

increase this difference and therefore the gain from exerting effort.

Now consider the agent’s incentives at time t more generally if the principal offers the

full reward for a report of left-biased signal L. Adding this reward will always improve

the continuation payoff from exerting effort by at least (1 − µN
t−1)(1 − rLt,0)—following the

previous logic, this change would exactly be the increase in payoffs if rewards following

signal L were constant after time t. If, instead, they are strictly decreasing, then the change

yields a strictly higher gain from effort. However, the gain from stopping effort is always

at most (1− µN
t−1)(1− rLt−1,0)—again, it would be exactly this amount if the agent were to

report signal L when shirking; otherwise, there would be no change at all. Since the gain

from exerting effort is always at least as large as the gain from shirking, this modification

always (at least weakly) strengthens the incentives to exert effort.

Step Two: Collapsing the rewards after signal R into a single payment The second

step shows that it suffices to offer just one menu option in case signal R is observed. The
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idea is to replace all rewards following signal R with the single menu option rR
t̂
, where

t̂ is selected as the minimum time (or equivalently the highest belief µN
t̂
) at which the

agent would prefer rewards (1, 0) to rR
t̂
in the absence of a Poisson signal arrival. Figure 4

illustrates this replacement: the red line represents the agent’s expected payoff if choosing

the reward (1, 0), while the thick black line represents the agent’s payoff if stopping effort

and pretending to have obtained the R signal at a given on-path belief. The replacement

we identify is illustrated by the dashed black line.

Why does this modification weakly strengthen the incentives to exert effort? When

µN
t−1 ≤ µN

t̂
or equivalently t ≥ t̂ + 1, the agent’s payoff from not exerting effort in the

continuation game Gt remains unchanged under the new contract: the replacement is chosen

precisely so that the reward option (1, 0) is selected at any such no information belief. But

since rewards decrease over time, this modification ensures a larger reward following a

right-biased signal R, strengthening the incentives to exert effort. The case of µN
t−1 >

µN
t̂

or equivalently t ≤ t̂ is more subtle: Here, the payoff from both exerting effort and

stopping in the continuation game Gt decreases. However, it turns out that the payoff from

stopping decreases by more. Indeed, the decrease in the expected utility from stopping at no

information belief µN
t−1 is µN

t−1(r
R
t−1,1− rR

t̂,1
). The decrease in expected utility from exerting

effort is at most µN
t−1(r

R
t,1 − rR

t̂,1
) since there is a chance that an R signal is never observed,

which implies that the probability of this change in rewards being relevant when exerting

effort is less than µN
t−1. Thus, the payoff from exerting effort decreases by less than the

payoff from stopping due to the decreasing rewards structure. Therefore, the agent is still

willing to exert effort under this replacement. See Section B.2 for complete formal details.

5.3 Single-signal Environment

We now consider the environment where absent Poisson signals, µN
t drifts toward 0, while

a single Poisson signal causes beliefs to jump upward.

Theorem 4 (Single-signal Environment).

In the single-signal environment, there exists a scoring rule implementing maximum effort.

Theorem 4 is more subtle than Theorem 3 because imperfect signals might require posi-

tive rewards in both states to implement optimal dynamic efforts. This creates additional

complexity: we cannot simply “flatten” rewards as in Theorem 3 without carefully tracking

how these changes affect incentives across all beliefs.

Step One: Convexifying the no-information utility Our first step is to replace the

arbitrary dynamic contract with one where the no-information utility is “convexified”—i.e.,
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replacing the contract with one where uNt is convex in µN
t . While this property holds for

any (static) scoring rule, this property need not hold for dynamic contracts.

We describe the argument. Define t̄ to be the earliest time such that the no-information

utility exhibits a nonconvexity. A nonconvexity in the no-information utility implies that

t̄ ≤ τM. One of our observations is that the dynamic incentives imply that the effort

constraint cannot be binding at t̄ + 1.18 Intuitively, the no-information utility at time

t cannot be larger than the convex combination between (1) the reward of receiving a

signal R immediately at time t + 1; and (2) the continuation payoff at time t + 1 for not

receiving any Poisson signal at time t. If the effort constraint is binding at time t̄+ 1, the

latter equals the no information utility at time t̄+ 1, which leads to a contradiction due to

the non-convexity of the no information utility.

On the other hand, if the agent’s incentive to exert effort is slack at time t̄ + 1, we

may raise some rewards in the menu option rNt̄ to smooth the non-convex piece without

violating earlier IC constraints. Repeating this argument pushes convexity forward through

time until the entire uNt becomes convex.

Step Two: Identifying a static implementation of the scoring rule Since convex

functions are equal to the upper envelope of the linear functions below them, a natural

conjecture in light of Step One is that the principal could offer a static contract providing

the set of reward functions that are tangent to uNt at some belief. This contract provides

the same payoff if effort is not exerted; moreover, no higher rewards could be provided if

Poisson signals arrive without increasing the no-information utility above uNt .

However, this argument does not work since the constructed rewards may lie outside of

[0, 1] for an arbitrary no-information utility function; for instance, consider uNt = (µN
t )2. A

dynamic contract that implements this no-information utility is a constant reward (µN
t )2

at time t regardless of the realization of the state. However, to implement this utility

function using a scoring rule, by Lemma 7, the menu option for belief µ ∈ [0, 1] must be

(−µ2, 2µ− µ2), which violates the ex post individual rationality constraint.

Intuitively, this kind of a violation of the constraint that rewards lie in [0, 1] arises be-

cause the no-information utility is too convex. In this case, we can flatten the no-information

utility by decreasing the reward at earlier times—analogous to Step Two of Theorem 3. Un-

der this flattening, the no-information utility decreases weakly more than the continuation

payoff in all continuation games, yielding stronger incentives to exert effort. Figure 5 illus-

trates this idea, with details provided in Section B.3.

18See Figure 7 in Section B.3 for an illustration.
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10 µN
t̂

Figure 5: The black curve is the convex no-information utility of the agent, and t̂ is the minimum
time with a bounded tangent line (red line). The thick dashed line is the no-information utility of
the agent given a feasible scoring rule that offers a menu option that corresponds to the red line
instead of the black curve for belief µ ≥ µN

t .

6 Insufficiency under Noisy Learning and Slow Drift

We now turn to environments with noisy signals and slow drift. Noisy signals satisfy:

λR
1 > λR

0 > 0 and 0 < λL
1 < λL

0 ,

i.e., learning is imperfect, and either signal may arise under either state. Slow drift means:

λR
0 + λL

0 ⪅ λR
1 + λL

1

and hence the belief moves gradually towards 0 when no Poisson signal arrives. Importantly,

the single-signal assumption implies that, for a fixed arrival rate of R, beliefs drift at

the maximal rate conditional on non-arrival. In this sense, the single-signal environment

represents an extremal benchmark opposite to settings with slow drift.

Intuitively, increasing a late reward now affects rewards for exerting effort less than

shirking incentives under noisy signals: e.g., if the reward for the state being 0 is increased,

the agent may not enjoy this increase when exerting effort if he receives a right-biased signal

R while the state is 0. Thus, the logic of Theorem 3 fails. Furthermore, since beliefs drift

toward state 0, rewards for receiving a left-biased signal L can be lowered over time without

incentivizing the agent to shirk and lie. As described in Section 3.4, these modifications are

in the direction of those that maximize the incentives for the agent to exert effort.

To state our results, we first provide a formal bound on how long the horizon should be

so that the time horizon is not a binding constraint. We define this time as Tλ,D,c:

Lemma 3. Let µλ,c ≜ min{1
2 ,

c
λR
1 −λR

0
} and let Tλ,D,c be the maximum time such that
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µN
Tλ,D,c−1 ≥ µλ,c. The stopping time τM satisfies τM ≤ Tλ,D,c, given any prior D ∈ (0, 1),

arrival rates λ, cost of effort c, and contract M with rewards belonging to [0, 1].

Intuitively, Tλ,D,c is the maximum calendar time the agent can be incentivized to exert

effort in any contract when the prior is D. The following result provides sufficient conditions

necessitating (more complex) dynamic structures in the effort-maximizing contract:

Theorem 5 (Strictly Less Effort Under Scoring Rules).

Fix any prior D ∈ (0, 12), any cost of effort c, and any constant κ0 > 0, 14 ≥ κ̄1 > κ1 > 0.

There exists ϵ > 0 such that for any λ satisfying:

• λR
1 − λR

0 ≥ 1
D (c+ κ0); (sufficient-incentive)

• λL
1 , λ

L
0 , λ

R
0 , λ

R
1 ∈ [κ1, κ̄1]; (noisy-signal)

• λR
1 + λL

1 ∈ (λR
0 + λL

0 , λ
R
0 + λL

0 + ϵ), (slow-drift)

• and T ≥ Tλ,D,c, (sufficient-horizon)

any static scoring rule implements effort strictly less than the maximum.

The first and last assumptions prevent trivial horizon or zero-incentive constraints. The

substantive assumptions are noisy signals and slow drift. The former implies the technology

is far enough from the case considered in Theorem 3, while the latter reflects the technology

is far enough from the case considered in Theorem 4 as described above.

Our proof considers a particular contract that can outperform any static contract:

Definition 3 (Myopic-incentive Contract).

When prior D ∈ (0, 12), a contract M with menu options {rst }t≤τM,s∈S ∪{rNτM} is a myopic-

incentive contract if rRt = (0, 1) and rLt = (
µN
t

1−µN
t
, 0) for any t ≥ 0, and rNτM = rLτM.

Intuitively, this contract offers the full reward when guessing state 1 and
µN
t

1−µN
t
when guessing

state 0. The rewards are carefully chosen such that an agent with belief µN
t is indifferent

between these two reward options. Note that since µN
t decreases over time, so does the

reward when the agent guesses state 0. This property is necessary for the constructed

contract to be incentive-compatible.

The terminology ‘myopic-incentive’ reflects that this contract reoptimizes rewards period-

by-period. The rewards rRt = (0, 1) and rLt = (
µN
t

1−µN
t
, 0) form a V-shaped scoring rule with

a kink at belief µN
t , which is the optimal scoring rule for the continuation game with the

prior being µN
t . We mention that the myopic-incentive contract typically does not pro-

vide maximal incentives to exert effort in all continuation games—after all, rewards are
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decreasing over time, so an agent who exerts effort and receives a Poisson signal in later

periods may receive a lower reward. However, Lemma 5 in the Online Appendix shows

that these contracts nevertheless provide incentives close to the effort-maximizing contract

under slow-drift. Intuitively, slow drift ensures that the aforementioned decreases in the

rewards over time have a minor impact on the agent’s incentives to exert effort at any belief.

Theorem 5 follows from noting that the same cannot be said for the effort-maximizing

static contract. Letting M∗ denote the effort-maximizing dynamic contract, for a contract

to perform only slightly worse than M∗, it is still necessary to provide incentives to exert

effort at times close to τM∗ . Section OA 4 illustrates that when signals are noisy, such

static contracts are too weak to incentivize the agent to exert effort at time 0, leading to

a contradiction. Simply put, dynamic contracts can adapt incentives to both the initial

beliefs as well as the later beliefs; static contracts cannot.

We mention that the conditions in Theorem 5 facilitate a comparison in the amount

of effort implemented by the myopic-incentive contract and an arbitrary (static) scoring

rule. In particular, these conditions avoid the need to provide more structure to make this

comparison sharp—for instance, to avoid integer issues which would suggest the increased

strength from dynamics are insufficient to induce another period of effort. Nevertheless, the

conditions deliver our main qualitative message: a strong enough violation of the conditions

for the sufficiency of static elicitation imply the necessity of dynamic elicitation.

Along these lines, an assumption in Theorem 5, but one that appears relatively harmless,

is that D ∈ (0, 12). This restriction ensures the menus in the myopic-incentive contract re-

main within [0, 1]. Combined with downward drift, this ensures feasibility and compatibility

with truthful reporting in myopic incentive contracts.

7 Additional Observations and Final Thoughts

We conclude with some additional discussion, presenting our final thoughts and proposing

several open questions in Section 7.3.

7.1 Properties of Optimal Scoring Rules Under Dynamics

The results in Section 5 provide conditions such that the optimal contract has a static

implementation as scoring rules. However, the structure of the optimal scoring rules remains

elusive. In this section, we show that for perfect-learning and single-signal environments,

the dynamics in information acquisition still play a crucial role in determining the optimal

scoring rules. In particular, we show that the optimal scoring rules in those two dynamic
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0 1

r1

µ(r1) µ̄(r1)µR
t

z0

z1

Figure 6: The illustration for both perfect-learning and single-signal environments. The red lines
are the agent’s utility uN

t−1 for not exerting effort and the blue curve is the agent’s utility U+
t from

exerting effort in at least one period, both as a function of the no information belief µN
t−1. The black

curve is the agent’s utility for not exerting effort in the alternative scoring rule with additional menu
option (z0, z1).

environments differ from those in static environments.

Perfect-learning In Theorem 3, we show that a V-shaped scoring rule implements the

maximum effort. However, the effort-maximizing choice of the parameter r1 is not provided.

In this section, we show that the optimal choice of r1 would not lead to a V-shaped scoring

rule with a kink at the prior, resulting in a difference compared to the static environments.

To illustrate the idea, we consider an environment where T is sufficiently large so that

the time horizon would not be a binding constraint for exerting costly effort. Given a V-

shaped scoring rule P with parameters r0 = 1 and r1 ∈ [0, 1], recall that uNt is the agent’s

utility when not exerting effort after time t. Let U+
t be the value function of the agent at

the prior belief µN
t−1: That is, the agent’s payoff when exerting effort optimally in at least

one period starting from (and including) time t. It is straightforward that U+
t is convex in

µN
t−1, with its derivative between −1 and r1. We let µ(r1) ≤ µ̄(r1) be the beliefs such that

U+
t intersects uNt .19 The agent has incentives to exert effort at time t given scoring rule P

if and only if µN
t ∈ [µ(r1), µ̄(r1)]. Figure 6 illustrates how µ(r1) and µ(r1) are determined,

namely as the intersection between the agent’s value function U+
t and the payoff attainable

without exerting any further effort.

Lemma 4. Both µ(r1) and µ̄(r1) are weakly decreasing in r1.

In particular, the agent has incentives to exert effort initially if and only if D ∈
19More formally: Assuming that U+

t ≥ uN
t−1 for some t ≥ 0, we define µ(r1) = min{µN

t , t ≥ 0 :

U+
t ≥ uN

t−1} and µ̄(r1) = max{µN
t , t ≥ 0 : U+

t ≥ uN
t−1}. If U+

t < uN
t−1 holds for all t, then the agent

does not work and we take µ(r1) = µ(r1) to be undefined.
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[µ(r1), µ̄(r1)]. Lemma 4 implies that by increasing the reward r1 for predicting state 1

correctly in the scoring rule, the agent has incentives to exert effort for longer (µ(r1) is

smaller), but the agent has a weaker incentive to exert effort at time 0 (µ̄(r1) is smaller).

Therefore, the optimal choice of r1 is

r∗1 = max{r1 : µ̄(r1) ≥ D}.

Naturally, the kink of the V-shaped scoring rule induced by r∗1 would not be located at the

priorD, as illustrated in Figure 6. Our analysis also highlights the economic intuition behind

this difference. In dynamic environments, the principal needs to balance the incentives

between earlier and later periods. By skewing the kink of the V-shaped scoring rule away

from the prior, the agent faces a stronger incentive to exert effort in future periods.

Finally, our observation here also illustrates an interesting dynamic effect in our model:

for long time horizons, there exist µ1 > µ2 > µ3 such that the agent can be incentivized to

work when the no information belief would drift from (a) µ1 to µ2 or (b) µ2 to µ3, but not

when this belief would drift from µ1 to µ3.

Single-signal A notable feature in the single-signal environment is that, although the

effort-maximizing contract can be implemented as a static scoring rule, this scoring rule may

not be V-shaped. Put differently, effort-maximizing scoring rules need not simply involve

the agent guessing the state and being rewarded for a correct guess. It may be necessary to

reward the agent even when the guess is wrong. Consider an interpretation of the minimum

reward across the two states as the “base reward” and the difference between the rewards as

the “bonus reward.” From this perspective, our results indicate that it may be necessary to

consider scoring rules where the base reward is strictly positive. This observation may seem

counterintuitive, as providing a strictly positive base reward decreases the bonus reward

for the agent since total rewards are constrained to the unit interval. A smaller bonus may

subsequently lower the agent’s incentive to exert effort.

However, the correct intuition is as follows: while providing a strictly positive base

reward at time t decreases the agent’s incentive to exert effort at time t, it increases the

agent’s incentive to exert effort at earlier times t′ < t; indeed, the addition of the positive

base reward leads the agent to anticipate higher rewards from exerting effort in cases where

the terminal belief is in an intermediate range. This modification induces more effort if the

agent’s incentive constraint for exerting effort initially binds at time 0 but becomes slack

at intermediate time t ∈ (0, τM). As illustrated in Figure 6, by implementing the effort-

maximizing V-shaped scoring rule, the agent’s incentive for exerting effort is binding only at

the extreme time 0 with belief D = µ̄(r1) and time τM with belief µN
τM = µ(r1). In this case,
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since the signals are not perfectly revealing, there may exist a time t such that the agent’s

belief for receiving a right biased signal is µR
t ∈ (µ(r1), µ̄(r1)). By providing an additional

menu option with a strictly positive base reward in the scoring rule to increase the agent’s

utility at beliefs µR
t (e.g., the additional menu option (z0, z1) illustrated in Figure 6), the

agent’s incentive constraint for exerting effort at time 0 is relaxed, and the contract thus

provides the agent incentives to exert effort following more extreme prior beliefs without

influencing the stopping belief µ(r1).

7.2 Non-invariant Environments

Our model assumes that both the cost of acquiring information and the signal arrival

probabilities when exerting effort are fixed over time. On the other hand, we can also

allow for more general time-dependent cost functions. In particular, there exist settings

where the cost of acquiring information is lower closer to the decision deadline, regardless

of the previous efforts exerted by the agent. In these applications, given a dynamic contract,

the best response of the agent may not be a stopping strategy. Scoring rules still implement

maximal effort in this extension under one of three conditions in Section 5—in the sense

that given any dynamic contract M and any best response of the agent, there exists another

contract M̂ that can be implemented as a scoring rule, and the agent’s best response in

contract M̂ first order stochastic dominates his best response in contract M.20 Therefore,

the information acquired under contract M̂ is always weakly Blackwell more informative

compared to the information acquired under contract M.

An important implication of extending our results to non-invariant costs is that they

also apply to settings where the agent discounts future payoffs. Essentially, when the agents

discount future payoffs, it corresponds exactly to exponentially decreasing cost functions,

as payments are only made after the state realization after T . Consequently, all our main

results, such as the optimality of scoring rules in perfect-learning or single-signal environ-

ments, extend naturally to this setting.

We can similarly allow for time dependence in the informational environment. Specif-

ically, we can allow for the arrival rates of signals at any time to depend on the amount

of effort the agent has exerted until that point. That is, suppose that if the agent has

exerted effort for t̃ units of time, then exerting effort produces a right-biased signal that

arrives in state θ with probability λR
θ,t̃
, and a left-biased signal with probability λL

θ,t̃
(and no

signal with complementary probability). While seemingly minor, this modification induces

20Let zt, ẑt ∈ {0, 1} be the effort decision of the agent given contracts M,M̂ respectively
conditional on not receiving any Poisson signal before t. We can show that given any time t,∑

i≤t zi ≤
∑

i≤t ẑi.
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more richness in the set of possible terminal beliefs as a function of the effort history—for

instance, if the terminal beliefs are always in the set {p, p}, despite drifting over time.

Our proof techniques do not make use of the particular belief paths induced by constant

arrival rates and hence extend to this case, with the minor exception that Theorem 4

requires µR
t to be weakly monotone as a function of time (a property that holds when the

arrival rate is constant). Otherwise, as long as the parameters stay within each environment

articulated in Section 5, the proofs of these results extend unchanged.

7.3 Final Remarks

We have articulated how dynamic rewards can expand the set of implementable strategies

in a simple yet fundamentally dynamic information acquisition problem. The economic im-

portance of contracting for information acquisition is self-evident, and most natural stories

for why information acquisition is costly involve some dynamic element. Our goal has been

to take such dynamics seriously, for learning technologies with a natural interpretation in

terms of forecasters seeking a particular sought-after piece of falsifiable evidence, and under

a class of contracts in line with past work on forecaster incentive provision.

We have shown that whether the decision maker benefits from a contracting environment

that facilitates dynamic reporting depends on the nature of the dynamic learning process.

Along the way, we discussed how the relevant properties of the information acquisition

technology have natural interpretations in various settings of practical interest. As our focus

is on contracting under a general class of mechanisms, a fundamental difficulty underlying

our exercise is the lack of any natural structure (e.g., stationarity) under an arbitrary

dynamic contract. Such assumptions are often critical in similar settings. Despite this

fundamental challenge, we provided simple, economically meaningful conditions such that

maximum effort is implementable by a scoring rule and explained the extent to which these

conditions are necessary for this conclusion to hold.

There are many natural avenues for future work. Empirically, our results show how

learning technologies influence the benefits of time variation to rewards. While we focus on

a simple forecasting problem, such questions may be of interest when eliciting other kinds

of information beyond a prediction of a future event—for example, if the learning process

itself is privately known by the expert (Chambers and Lambert, 2021). More broadly,

we view questions regarding whether or not simple contracts are limited in power relative

to dynamic mechanisms as a worthwhile agenda overall. Any further insights on these

questions would prove valuable toward understanding how dynamics influence mechanism

design for information acquisition, for both theory and practice.
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A Additional Preliminaries

A.1 Effort-Maximizing Dynamic Contracts

Proof of Theorem 1. By Lemma 2, the effort-maximizing contract can be represented as

offering a sequence of menu options {rst }t≤τM,s∈S ∪ {rNτM} that satisfy the incentive con-

straints.

Recall that rNt is the menu option chosen by the agent with belief µN
t given set of

available menu options Mt at time t. For any time t ≤ τM, let

r̂Nt = argmax
(r0,r1)∈[0,1]2

r0

s.t. µN
t r1 + (1− µN

t )r0 = µN
t rNt,1 + (1− µN

t )rNt,0.
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That is, the agent with belief µN
t has the same expected reward given both menu options

rNt and r̂Nt , and r̂Nt maximizes the reward for state 0. Note that r̂Nt is also the menu option

that maximizes the agent’s utility with belief µL
t without violating the incentive constraints.

Therefore, it suffices to consider contracts where r̂Lt = r̂Nt for all t ≤ τM.

Moreover, by the incentive constraints over time, the menu options r̂Lt = r̂Nt are decreas-

ing over time, and the decrease happens first for state 1 since r̂Nt maximizes the rewards for

state 0, which implies that conditions (1) in Theorem 1 holds. Finally, the menu option for

belief µR
t can be computed by maximizing the agent’s utility without violating the incentive

constraints from previous time, i.e.,

rRt = argmax
r:Θ→[0,1]

u(µR
t , r)

s.t. u(µN
t′ , r̂

N
t′ ) ≥ u(µN

t′ , r), ∀t′ ∈ [0, t].

This is because such menu option maximizes the agent’s continuation utility for exerting

effort at any time t ≤ τM without affecting the agent’s utility for stopping immediately.

Therefore, condition (2) in Theorem 1 is satisfied as well.

B Effort-Maximizing Contracts as Scoring Rules

B.1 Stationary Environment

Proof of Theorem 2. For any contract M with stopping time τM ∈ [0, T ], to show that

there exists a static scoring rule P such that the agent has incentive to exert effort at least

until time τM given static scoring rule P , it is sufficient to show that there exists a static

scoring rule P such that the agent has an incentive to exert effort at any continuation game

Gt for any t ∈ [0, τM].

First note that to maximize the expected score difference for the continuation game at

any time t, it is sufficient to consider a static scoring rule. This is because at any time

t′ ∈ [t, τM], we can allow the agent to pick any menu option from time t to τM. This

leads to a static scoring rule where the agent’s expected utility at time t for stopping

effort immediately is not affected but the continuation utility weakly increases. Finally, by

Proposition 1, the effort-maximizing static scoring rule that maximizes the expected score

difference is the V-shaped scoring rule P with a kink at prior D. Since the optimal scoring

rule remains the same for all continuation games in stationary environments, this scoring

rule implements the optimal dynamic efforts.
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B.2 Perfect-learning Environment

Proof of Theorem 3. As alluded to in the main text, the proof follows two steps:

Step One: We first show that, for any prior D and any signal arrival probabilities λ, there

exists an effort-maximizing contract M with a sequence of menu options {rst }t≤τM,s∈S ∪
{rNτM} such that rLt = rNτM = (1, 0) for any t ≤ τM.

For any contract M, by applying the menu representation in Lemma 2, let {rst }t≤τM,s∈S

be the set of menu options for receiving Poisson signals and let rNτM = (z0, z1) be the menu

option for not receiving any Poisson signal before the stopping time τM. Note that in the

perfect-learning environment, it is without loss to assume that rLt,1 = 0 for any t ≤ τM since

the posterior probability of state 1 is 0 after receiving a Poisson signal L. Now consider

another contract M̂ with menu options {r̂st }t≤τM,s∈S and (ẑ0, ẑ1), where

(ẑ0, ẑ1) = argmax
z,z′∈[0,1]

z s.t. µN
τMz′ + (1− µN

τM)z = uNτM , (4)

and for any time t ≤ τM and any signal s ∈ S,

r̂st =

rst u(µs
t , r

s
t ) ≥ u(µs

t , (ẑ0, ẑ1))

(ẑ0, ẑ1) otherwise.

Essentially, contract M̂ adjusts the reward function for no information belief µN
τM such that

the reward for state being 0 weakly increases, the reward for state being 1 weakly decreases,

and the expected reward remains unchanged. Moreover, at any time t ≤ τM, contract M̂
allows the agent to optionally choose the additional option of (ẑ0, ẑ1) to maximize his

expected payoff for receiving an informative signal at time t.

It is easy to verify that for any signal s ∈ S and any time t ≤ τM, the expected

utility of the agent for receiving an informative signal s is weakly higher, and hence, at any

time t ≤ τM, the continuation payoff of the agent for exerting effort until time τM weakly

increases in contract M̂. Moreover, at any time t, the expected reward of the agent for

not exerting effort at time t with belief µN
t−1 satisfies ûNt−1 ≤ uNt−1. This is because, by our

construction, at any time t ≤ τM, fewer options are available to the agent in contract M̂,

except for the additional option of (ẑ0, ẑ1). However, u(µN
t−1, (z0, z1)) ≥ u(µN

t−1, (ẑ0, ẑ1))

since µN
t−1 ≥ µN

τM and both options (z0, z1) and (ẑ0, ẑ1) give the same expected reward for

the posterior belief of µN
τM . Combining both observations, we have τM̂ ≥ τM and M̂ is also

an effort-maximizing contract.

Note that in optimization program (4), it is easy to verify that ẑ1 = 0 if ẑ0 < 1. If

ẑ0 = 1, in this case, at any time t, by the incentive constraint of the agent for any belief
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µL
t , we must have r̂Lt,0 = 1 as well. Therefore, the agent receives the maximum reward of 1

whenever he receives a left-biased signal. In this case, incentive compatibility implies that

ẑ1 ≤ rRt,1 for all t ≤ τM. Therefore, we can also decrease ẑ1 and rRt,1 for all t ≤ τM by

ẑ1, which does not affect the agent’s incentive for effort and hence the effort-maximizing

contract satisfies that rLt = rNτM = (1, 0) for any t ≤ τM.

Next, we will focus on the case when ẑ0 < 1 and hence ẑ1 = 0. Now consider another

contract M̄ with menu options {r̄st }t≤τM̂,s∈S and (z̄0, z̄1), where (z̄0, z̄1) = (1, 0) and for

any time t ≤ τM, r̄Rt = r̂Rt and r̄Lt = (1, 0). We show that this weakly improves the agent’s

incentive to exert effort until time τM̂ for any t ≤ τM̂. Specifically, for any t ≤ τM̂, the

increase in the no information payoff for the continuation game Gt is

ūNt−1 − ûNt−1 ≤ (1− µN
t−1)(1− r̂Lt−1,0).

This is because in contract M̄, either the agent prefers the menu option rRt′ for some t′ ≥ t−1,

in which case the reward difference is 0, or the agent prefers the menu option (1, 0), in which

case the reward difference is at most (1− µN
t−1)(1− r̂Lt−1,0) since one feasible option for the

agent in contract M̂ is r̂Lt−1 with an expected reward at least (1 − µN
t−1)r̂

L
t−1,0. Moreover,

for any time t ≤ τM̂, the increase in continuation payoff for exerting effort from t until τM̂
is at least (1 − µN

t−1)(1 − r̂Lt,0). This is because incentive constraints imply that r̂Lt,0 must

decrease as t increases, which is due to the fact that in the perfect-learning environment, the

posterior belief µL
t assigns a probability of 1 to the state being 0 at any time t. Therefore,

when the state is 0, the reward of the agent is deterministically 1 in contract M̄ and the

reward of the agent is at most r̂Lt,0 in contract M̂, implying that the difference in expected

reward is at least (1 − µN
t−1)(1 − r̂Lt,0). Combining the above observations and observing

that (1 − µN
t−1)(1 − r̂Lt,0) ≥ (1 − µN

t−1)(1 − r̂Lt−1,0), we have τM̄ ≥ τM̂, and hence M̄ is also

effort-maximizing.

Step Two: We now show that we can replace all other menu options except (1, 0) with a

single menu option that the agent can select at any time. By the previous step, it suffices

to focus on contract M with a sequence of menu options {rst }t≤τM,s∈S ∪ {rNτM} such that

rLt = rNτM = (1, 0) for any t ≤ τM. In addition, since signals are perfectly revealing, it is

without loss to assume that rRt,0 = 0 and the incentive constraints imply that rRt,1 is weakly

decreasing in t.

Let t̂ ∈ [0, τM] be the minimum time such that an agent with no information belief µN
t̂

weakly prefers menu option rNτM = (1, 0) compared to rR
t̂
. Since both µN

t and rRt,1 are weakly

decreasing in t, an agent with posterior belief µN
t weakly prefers rRt′ compared to rNτM for

any t, t′ < t̂, and weakly prefers rNτM compared to rRt′ for any t, t′ ≥ t̂. Now consider another
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contract M̂ that offers only two menu options, rNτM = (1, 0) and rR
t̂
, at every time t ≤ τM.

Contract M̂ can be implemented as a V-shaped scoring rule with parameters r0 = 1 and

r1 = rR
t̂,1

∈ [0, 1]. Moreover, at any time t ≤ τM,

• if t ≥ t̂ + 1, in the continuation game Gt,τM , the agent’s utility for not exerting

effort is the same in both contract M and M̂ because the agent with no information

belief µN
t−1 will choose the same menu option rNτM . However, the agent’s utility for

exerting effort is weakly higher in contract M̂ since the reward rRt,1 from receiving a

right-biased signal at time t weakly decreases in t.

• if t ≤ t̂, in the continuation game Gt,τM , by changing the contract from M to M̂,

the decrease in agent’s utility for not exerting effort is exactly µN
t−1(r

R
t−1,1 − rR

t̂,1
) by

changing the menu option for no information belief µN
t−1 from rRt−1 to rR

t̂
. However,

the decrease in the agent’s utility for exerting effort in Gt,τM is at most µN
t−1(r

R
t,1−rR

t̂,1
)

since the decrease in reward for receiving a right-biased signal R is at most rRt,1 − rR
t̂,1

and it only occurs when the state is 1.

Therefore, given contract M̂, the agent has stronger incentives to exert effort in all contin-

uation games Gt,τM with t ≤ τM, which implies that τM̂ ≥ τM and hence contract M̂ is

also effort-maximizing.

Proof of Lemma 4. Note that it is easy to verify that if there exists a belief such that the

agent is incentivized to exert effort, the intersection belief µ(r1) is such that the agent with

belief µ(r1) would prefer menu option (1, 0) to (0, r1) and µ̄(r1) is such that the agent with

belief µ̄(r1) would prefer menu option (0, r1) to (1, 0).

Consider the case of decreasing the reward parameter from r1 = z to r1 = z′ for

0 ≤ z′ < z ≤ 1. The agent’s utility for not exerting effort given menu option (1, 0)

remains unchanged, but the agent’s utility for exerting effort in at least one period decreases.

Therefore, µ(r1) weakly increases. Moreover, given posterior belief µN
t−1, the agent’s utility

for not exerting effort given menu option (0, r1) decreases by µN
t−1(z− z′), while the agent’s

utility for exerting effort in at least one period decreases by at most µN
t−1(z − z′) since

the reward decrease can only occur when the state is 1. Therefore, µ̄(r1) also weakly

increases.

B.3 Single-signal Environment

Proof of Theorem 4. As mentioned in the main text, the proof proceeds in two steps:

Step One: We first show that an effort-maximizing contract exists with the no-information

utility uNt convex in µN
t . For any contract M, let ut(µ) be the convex hull of the no
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information payoff uNt′ for t′ ≤ t by viewing uNt′ as a function of µN
t′ . Consider an effort-

maximizing contract M with the following selection:

1. maximizes the time t̄ such that ut̄−1(µ
N
t ) = uNt for any time t ≤ t̄− 1;

2. conditional on maximizing t̄, selecting the one that maximizes the weighted average

no information payoff after time t̄, i.e.,
∑

i≥0 e
−i · rNt̄+i.

Note that the exponential weight e−i is purely for the tie breaking selection and ensures a

finite sum of the no information payoff. The existence of an effort-maximizing contract given

such a selection rule can be shown using standard arguments since, recalling that we have

a discrete-time model, the set of effort-maximizing contracts that satisfy the first criterion

is compact and the objective in the second selection criterion is continuous. Let τM be the

stopping time of the agent for contract M. We will show that t̄ = τM + 1.

First, we observe that it cannot be the case that t̄ = τM. This is because the agent does

not have incentives to exert effort after time τM. By increasing the agent’s utility rNt̄ in

this case, we can restore the convexity of rNt at t = t̄ without violating the effort incentives.

Now, suppose by contradiction we have t̄ ≤ τM − 1. At any time t ≤ τM, recall that

Gt is the continuation game at time t with prior belief µN
t−1 such that the agent’s utility for

not exerting effort is uNt−1 and the agent’s utility for exerting effort in Gt is

Ut ≜

(
1−

∑
s∈S

F s
t (τM)

)
· u(µN

τM , rNτM) +

τM∑
t′=t

∑
s∈S

fs
t (t

′) · u(µs
t′ , r

s
t′).

Note that Ut ≥ uNt−1 for any t ≤ τM. We first show that the equality must hold at time

t̄+ 1, i.e., Ut̄+1 = uNt̄ . Let ūt(µ) be the upper bound on the expected reward at any belief

µ at time t given that no Poisson signal has arrived before t. Specifically,

ūt(µ) = max
z0,z1∈[0,1]

µz1 + (1− µ)z0 s.t. µN
t′ z1 + (1− µN

t′ )z0 ≤ uNt , ∀t′ ≤ t.

It is easy to verify that function ūt(µ) is convex in µ for all t and ūt(µ
N
t′ ) is an upper bound

on the no information utility uNt′ for all t′ > t. Moreover, for any µ ≤ µN
t , ūt(µ) is a linear

function in µ. The reward function ūt(µ) for t = t̄− 1 and µ ≤ µN
t̄ is illustrated in Figure 7

as the blue straight line.

Since the no information utility is not convex at time t = t̄, we have ūt̄−1(µ
N
t̄ ) > uNt̄ . In

this case, if Ut̄+1 > uNt̄ , by increasing uNt̄ to min{Ut̄+1, ūt̄−1(µ
N
t̄ )}, the agent’s incentive for

exerting effort is not violated. Moreover, selection rule (2) of maximizing the no information

utility after time t̄ is violated, a contradiction. Therefore, we can focus on the situation

where the agent’s incentive for exerting effort at time t̄+ 1 is binding.
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µ

Figure 7: This figure illustrates the case when µR
t̄ ≤ µN

t∗ . The black curve is the function ut̄(µ),
blue line is the function ū(µ) and the red line is the function y(µ).

By the construction of M, there exists t ≤ t̄ such that ut̄(µ
N
t ) < uNt . Let t∗ be the

maximum time such that ut̄(µ
N
t∗) = uNt∗ . That is, µN

t∗ is the tangent point such that uNt

coincides with it convex hull. See Figure 7 for an illustration. We consider two cases

separately.

• µN
t∗ ≥ µR

t̄ . In this case, let y(µ) be a linear function of posterior µ such that y(µN
t̄ ) =

uNt̄ and y(µR
t̄ ) = u(µR

t̄ ). Function y is illustrated in Figure 7 as the red line. Note that

in this case, we have y(µN
t̄−1) < ut̄(µ

N
t̄−1) = uNt̄−1. Moreover, y(µN

t̄−1) is the maximum

continuation payoff of the agent for exerting effort at time t̄ given belief µN
t̄−1. This

is because, by exerting effort, either the agent receives a Poisson signal R at time t̄,

which leads to posterior belief µR
t̄ with expected payoff u(µR

t̄ ) = y(µR
t̄ ), or the agent

does not receive a Poisson signal, which leads to belief drift to µN
t̄ , with the optimal

continuation payoff being Ut̄+1 = uNt̄ = y(µN
t̄ ). However, y(µN

t̄−1) < uNt̄−1 implies that

the agent has a strict incentive not to exert effort at time t̄, a contradiction.

• µN
t∗ < µR

t . In this case, consider another contract M̄ such that the no information

utility in contract M̄ is uN
t;M̄ = u(µN

t ) for any t ≤ t̄. Note that in contract M̄,

the expected reward of the agent at any time t for receiving a Poisson signal is the

same as in contract M, while the expected reward for stopping when not receiving

Poisson signals weakly decreases. Therefore, contract M̄ is also an effort-maximizing

contract. However, the time such that the no information payoff is a convex function

is strictly larger in M̄, contradicting our selection rule for M.

Therefore, we have t̄ = τM + 1 and the no information utility of the agent is a convex

function.

Step Two: We now show that we can “flatten” rewards to strengthen the agent’s incentives

to exert effort in case the reward constraint is violated. By Step One, there exists a contract
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ẑ0

Figure 8: The black solid curves are the agent’s expected utilities for not exerting effort as a
function of his belief at any time t. The left curve is the expected utility for beliefs without receiving
Poisson signals, and the right curve is the one receiving the Poisson signal R.

M with a sequence of menu options {rst }s∈S,t≤τM∪{rNτM} in which the no information payoff

is convex in the no information belief. If µN
t < uNt for all t ≤ τM, let ẑ1 = 1 and let ẑ0 ≤ 1 be

the maximum reward such that µN
t + ẑ0(1−µN

t ) ≤ uNt for all t ≤ τM. Otherwise, let ẑ0 = 0

and let ẑ1 ≤ 1 be the maximum reward such that ẑ1 · µN
t ≤ uNt for all t ≤ τM. Essentially,

the straight line (ẑ0, ẑ1) is tangent to the agent’s utility curve for not receiving Poisson

signals subject to the reward bound. Let t̂ be the time corresponding to the rightmost

tangent point. See Figure 8 for an illustration.

Let u(µ) be the function that coincides with uNt for µ ≤ uN
t̂

and u(µ) = (ẑ1− ẑ0)µ+ ẑ0.

Note that u is convex. Consider another contract M̂ that is implemented by scoring rule

P (µ, θ) = u(µ) + ξ(µ)(θ − µ) for all µ ∈ [0, 1] and θ ∈ {0, 1} where ξ(µ) is a subgradient

of u. It is easy to verify that the implemented scoring rule satisfies the bounded constraint

on rewards. Next, we show that τM̂ ≥ τM and hence contract M̂ must also be effort-

maximizing, which concludes the proof of Theorem 4.

In any continuation game Gt, recall that u
N
t−1 is the utility of the agent for not exerting

effort and Ut is the utility of the agent for exerting effort given contract M. For any time

t ≤ τM, the agent has incentive to exert effort at time t given contract M implies that

uNt−1 ≤ Ut. Given contract M̂, we similarly define ûNt−1 and Ût and show that for any time

t ≤ τM, Ut − Ût ≤ uNt−1 − ûNt−1. This immediately implies that the agent also has incentive

to exert effort at any time t ≤ τM given contract M̂ and hence τM̂ ≥ τM.

Our analysis for showing that Ut − Ût ≤ uNt−1 − ûNt−1 is divided into two cases.

Case 1: t ≥ t̂. In this case, since uNt−1 ≥ ûNt−1 for any t ≤ τM by the construction of

contract M̂, it is sufficient to show that Ût ≥ Ut for any t ∈ [t̂, τM]. We first

show that for any t ∈ [t̂, τM], if µR
t ≤ µN

t , we must have u(µR
t ) ≥ uRt in order to
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ẑ1
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Figure 9: The blue line is the expected utility of the agent for choosing the menu option (rRt,0, r
R
t,1)

if the utility at belief µR
t̂
is higher than the red line.

satisfy the dynamic incentive constraint in contract M. Next, we focus on the case

where µR
t > µN

t and show that ûRt = µR
t ẑ1 + (1 − µR

t )ẑ0 ≥ uRt . We prove this by

contradiction. Suppose that uRt > µR
t ẑ1+(1−µR

t )ẑ0. Recall that (r
R
t,0, r

R
t,1) are the

options offered to the agent at time t that attain expected utility uRt under belief

µR
t . Moreover, in our construction, either ẑ0 = 0, or ẑ1 = 1, or both equalities

hold. Therefore, the bounded constraints rRt,0, r
R
t,1 ∈ [0, 1] and the fact that agent

with belief µR
t prefers (rRt,0, r

R
t,1) over (ẑ0, ẑ1) imply that rRt,0 ≥ ẑ0. See Figure 9 for

an illustration. Since µN
t̂

< µR
t , this implies that the agent’s utility at belief µN

t̂

given option (rRt,0, r
R
t,1) is strictly larger than his utility under (ẑ0, ẑ1), i.e.,

µN
t̂
rRt,1 + (1− µN

t̂
)rRt,0 > µN

t̂
ẑ1 + (1− µN

t̂
)ẑ0 = uN

t̂
.

However, option (rRt,0, r
R
t,1) is a feasible choice for the agent at time t̂ in dynamic

contract M since t ≥ t̂, which implies that µN
t̂
rRt,1 + (1− µN

t̂
)rRt,0 ≤ uN

t̂
. This leads

to a contradiction.

Finally, for t ∈ [t̂, τM], conditional on the event that the informative signal did not

arrive at any time before t, since the agent expected utility given contract M̂ is

weakly higher compared to contract M given any arrival time of the Poisson signal,

taking the expectation we have Ût ≥ Ut.

Case 2: t < t̂. In this case, the continuation value for both stopping effort immediately and

exerting effort until time τM weakly decreases. However, we will show that the

expected decrease for stopping effort is weakly higher. For any t < t̂, let r̂t be the

reward such that uNt = µN
t r̂t+(1−µN

t )ẑ0. Note that r̂t ≥ ẑ1 and it is possible that

r̂t ≥ 1. The construction of r̂t is only used in the intermediate analysis, not in the
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Figure 10: The blue line is the utility function ũt, which serves as an upper bound on the utility
uR
t′ for any t′ ≥ t.

constructed scoring rules. Let ũt(µ) ≜ µr̂t + (1 − µ)ẑ0 be the expected utility of

the agent for choosing option (ẑ0, r̂t) given belief µ. This is illustrated in Fig. 10.

By construction, the expected utility decrease for not exerting effort in Gt is

uNt − ûNt = ũt(µ
N
t )− ûNt = µN

t (r̂t − ẑ1).

Next, observe that for any time t′ ∈ [t, τM], uRt′ ≤ ũt(µ
R
t′ ). This argument is

identical to the proof in Case 1, and hence omitted here. Therefore, the expected

utility decrease for exerting effort until τM is

Ut − Ût =

τM∑
t′=t

(
uRt′ − ûRt′

)
· fR

t (t′) ≤
τM∑
t′=t

(
ũt(µ

R
t′ )− ûRt′

)
· fR

t (t′)

= (r̂t − ẑ1) ·
τM∑
t′=t

µR
t′ · fR

t (t′) ≤ (r̂t − ẑ1) · µN
t−1 ≤ (r̂t−1 − ẑ1) · µN

t−1

where the second inequality holds by Bayesian plausibility and the last inequal-

ity holds since the no information belief drifts towards state 0. Combining the

inequalities, we have Ut − Ût ≤ uNt−1 − ûNt−1.

Combining the above two cases, we have Ut−Ût ≤ uNt−1− ûNt−1 for any t ≤ τM. Since the

agent’s optimal effort strategy is to stop at time τM given contract M, this implies that at

any time t ≤ τM, if the agent has not received any informative signal by time t, the agent

also has incentive to exert effort until time τM given contract M̂ that can be implemented

as a scoring rule.
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Online Appendix for “Incentivizing Forecasters to Learn:

Summarized vs. Unrestricted Advice”

Yingkai Li and Jonathan Libgober

OA 1 Optimality of Dynamic Contracts

Proof of Lemma 3. If T ≤ Tλ,D,c, the lemma holds trivially. Next we focus on the case

T > Tλ,D,c.

Suppose there exists a contract M such that τM > Tλ,D,c. The prior belief in the

continuation game GτM is µN
τM−1 < µλ,c ≤ 1

2 . By the definition of τM, the agent’s optimal

strategy is to exert effort for one period given contract M. This implies that the agent

has incentive to exert effort in continuation game GτM given the effort-maximizing scoring

rule for GτM . By Proposition 1, the effort-maximizing scoring rule for GτM is the V-shaped

scoring rule P with kink at µN
τM−1. By simple algebraic calculation, the expected utility

increase given scoring rule P for exerting effort in GτM is µN
τM−1(λ

R
1 − λR

0 ), which must be

at least the cost of effort c. However, this violates the assumption that µN
τM−1 < µλ,c, a

contradiction.

Lemma 5 (Approximate Effort Maximization of Myopic-incentive Contracts).

Given any prior D ∈ (0, 12), any cost of effort c, any constant κ0 > 0, and any η > 0, there

exists ϵ > 0 such that for any T ≥ Tλ,D,c and any λ satisfying that λs
θ ≤

1
4 for all s ∈ S and

θ ∈ {0, 1}, and

• λR
1 − λR

0 ≥ 1
D (c+ κ0); (sufficient-incentive)

• λR
1 + λL

1 ≤ λR
0 + λL

0 + ϵ, (slow-drift)

letting M be the myopic-incentive contract (Definition 3), we have µN
τM − µN

Tλ,D,c
≤ η.

Proof of Lemma 5. For any time t ≥ 0, given any information arrival probabilities λ such

that λR
1 + λL

1 ≤ λR
0 + λL

0 + ϵ, we have

µN
t−1 − µN

t = µN
t−1 −

µN
t−1(1− λR

1 − λL
1 )

µN
t−1(1− λR

1 − λL
1 ) + (1− µN

t−1)(1− λR
0 − λL

0 )

≤ µN
t−1

(
1− (1− λR

1 − λL
1 )

(1− λR
1 − λL

1 ) + (1− µN
t−1)ϵ

)
≤ 2µN

t−1(1− µN
t−1)ϵ ≤

1

2
ϵ. (5)

1



the second inequality holds since λR
1 + λL

1 ≤ 1
2 and the last inequality holds since µN

t−1(1−
µN
t−1) ≤ 1

4 .

For any η > 0, let ϵ = ηκ0

D > 0. Given the myopic-incentive contract M, the agent’s

utility increase for exerting effort in one period at time t is

µN
t−1λ

R
1 + (1− µN

t−1)(1− λL
0 ) ·

µN
t

1− µN
t

− µN
t−1 ≥ µN

t (λR
1 − λL

0 ) + 2(µN
t − µN

t−1)

where the inequality holds since (1 − λL
0 ) ·

µN
t

1−µN
t
− µN

t−1 ≤ 1. If µN
t ≥ µN

Tλ,D,c
+ η, we have

µN
t ≥ µλ,c + η and hence the expected utility increase is at least

µλ,c(λ
R
1 − λL

0 ) + η(λR
1 − λL

0 ) + 2(µN
t − µN

t−1) ≥ µλ,c(λ
R
1 − λL

0 )

where the inequality holds by the definition of ϵ and the sufficient incentive condition. Note

that this is at least the cost of effort c by the definition of µλ,c, and hence the agent has

incentive to exert effort at time t. Therefore, the stopping time given the myopic-incentive

contract satisfies µN
τM ≤ µN

Tλ,D,c
+ η.

To prove Theorem 5, we also utilize the following lemma to bound the difference in

expected scores when the posterior beliefs differ by a small constant of ϵ given any bounded

scoring rule.

Lemma 6. For any bounded static scoring rule P with expected reward function UP (µ)

given posterior belief µ, we have

|UP (µ+ ϵ)− UP (µ)| ≤ ϵ, ∀ϵ > 0, µ ∈ [0, 1− ϵ].

Proof. For any static scoring rule P , the subgradient of UP evaluated at belief µ equals its

difference in rewards between realized states 0 and 1, which is bounded between [−1, 1] since

the scoring rule is bounded within [0, 1]. This further implies that |UP (µ+ ϵ)− UP (µ)| ≤ ϵ

for any ϵ > 0 and µ ∈ [0, 1− ϵ].

Proof of Theorem 5. By Lemma 5, it is sufficient to show that there exists η > 0 and ϵ > 0

such that when the slow-drift condition is satisfied for constant ϵ, for any contract M that

can be implemented as a scoring rule, we have µN
τM − µN

Tλ,D,c
> η.

Suppose by contradiction there exists a contractM that can be implemented as a scoring

rule and µN
τM − µN

Tλ,D,c
≤ η. Let P be the scoring rule that implements contract M and let

UP (µ) = Eθ∼µ[P (µ), θ] be the expected score of the agent. Let U(µ) be a linear function

such that U(µL
τM) = UP (µ

L
τM) and U(µN

τM) = UP (µ
N
τM). Let U(µ) be a linear function such

2



µN
τR

µL
τR

µR
τR

1

Figure 11: The black curve is the expected score function UP . The red lines are linear functions
U and U respectively.

that U(µR
τM) = UP (µ

R
τM) and U(µN

τM) = UP (µ
N
τM). See Figure 11 for an illustration. Let

fs
t ≜ µN

t λR
1 +(1−µN

t )λR
0 . At time τM, the agent has incentive to exert effort, which implies

that the cost of effort c is at most the utility increase for exerting effort

fR
τM−1 · UP (µ

R
τM) + fL

τM−1 · UP (µ
L
τM) + (1− fR

τM−1 − fL
τM−1) · UP (µ

N
τM)− UP (µ

N
τM−1)

= fR
τM−1 · (UP (µ

R
τM)− U(µR

τM)) + U(µR
τM−1)− UP (µ

N
τM−1) ≤ fR

τM−1 · (UP (µ
R
τM)− U(µR

τM))

where the equality holds by linearity of expectation and the inequality holds by the convexity

of utility function UP . Therefore, we have

UP (µ
R
τM)− U(µR

τM) ≥ c

fR
τM−1

=
c

µN
τM−1λ

R
1 + (1− µN

τM−1)λ
R
0

≥
(λR

1 − λR
0 )(1−

η
µN
τM−1

)

λR
1 + 1

µN
τM−1

(1− µN
τM−1)λ

R
0

≥ (λR
1 − λR

0 )

λR
1 + 1

µN
τM−1

(1− µN
τM−1)λ

R
0

− 2η

κ1

where the second inequality holds since µN
τM ≤ µN

Tλ,D,c
+η ≤ µλ,c+η, and the last inequality

holds since λL
0 ≥ κ1.

For any constant γ > 0, let time t be the time such that µN
t−1 − µN

τM−1 > γ. First note

that the convexity of UP and the constraint on rewards belonging to the unit interval at

state 1 implies that

U(µN
t−1)− UP (µ

N
t−1) ≤

2η

κ1
·
1− µN

τM

1− µR
τM

·
µR
τM − µN

t−1

µR
τM − µN

τM

≤ 2η(κ1 + κ̄1)

κ21

3



where the last inequality holds since (1−µN
τM)· µ

R
τM−µN

t−1

µR
τM−µN

τM
≤ 1 and 1

1−µR
τM

≤ κ1+κ̄1

κ1
. Moreover,

UP (µ
R
t )− U(µR

t ) ≤
2η

κ1
·

1− µN
τM

µR
τM − µN

τM

≤ 2η

κ1
· λR

1

µN
τM(λR

1 − λR
0 )

≤ 2ηκ̄1
κ1c

.

Therefore, the utility increase for exerting effort in one period at time t is

fR
t−1 · UP (µ

R
t ) + fL

t−1 · UP (µ
L
t ) + (1− fR

t−1 − fL
t−1) · UP (µ

N
t )− UP (µ

N
t−1)

≤ fR
t−1 · U(µR

t ) + fL
t−1 · U(µL

t )− (fR
t−1 + fL

t−1) · U(µN
t ) + ϵ+

2ηκ̄1
κ1c

+
2η(κ1 + κ̄1)

κ21

≤ µN
τM(λL

0 − λL
1 )− γκ1 + ϵ+

2ηκ̄1
κ1c

+
2η(κ1 + κ̄1)

κ21
.

Since c = µλ,c(λ
R
1 − λR

0 ) ≥ (µN
τM − η)(λL

0 − λL
1 ), the agent suffer from a loss at least

γκ1 − ηκ̄1 − ϵ− 2ηκ̄1
κ1c

− 2η(κ1 + κ̄1)

κ21

for exerting effort in one period.

Now consider the utility increase for exerting effort from belief µN
t to µN

τM . Note that

for any δ > 0, with probability at least

1− (1− fR
t−1 − fL

t−1)
δ
ϵ ≤ 1− exp

(
−δ

ϵ
(fR

t−1 + fL
t−1)

)
,

the agent receives a Poisson signal and stops before the no information belief drifts for a δ

distance. Moreover, the loss is at least

γκ1 − 2δ − ηκ̄1 − ϵ− 2ηκ̄1
κ1c

− 2η(κ1 + κ̄1)

κ21

in each period before the no information belief drifts a δ distance. In contrast, the benefit

from exerting effort after the no information belief drifts a δ distance is at most 1, but it only

occurs with probability at most exp
(
− δ

ϵ (f
R
t−1 + fL

t−1)
)
. Therefore, the agent’s utility for

exerting effort is smaller than not exerting effort in continuation game Gt when parameters

δ, η, ϵ are chosen to be sufficiently small compared to γ. This leads to a contradiction since

the agent at time t will not choose to exert effort given scoring rule P .
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OA 2 General Dynamic Contracts

OA 2.1 Menu Representation

Proof of Lemma 2. Recall that by Lemma 1, it is without loss to assume that the agent

uses a stopping strategy. Given any time t, let rst be the menu option chosen by the agent if

the agent receives a Poisson signal s ∈ S at time t. Let rNτM be the menu option the agent

chooses if the agent does not receive any Poisson signal before stopping effort. By offering

the menu options Mt = {rst′}t′≥t,s∈S ∪{rNτM} at time t, the agent’s utilities for stopping and

exerting effort remain the same, and hence this simplified menu representation implements

the same stopping strategy.

OA 2.2 Communication-based Contracts

Let Mt be the message space of the agent at any time t. We denote the history at time t as

ht = {mt′}t′≤t. Let Ht be the set of all possible histories at time t. Since we allow rewards

to condition on the future realized outcome of interest (i.e., the state), we take the rewards

to be within the unit interval. As mentioned in our model, we can interpret the reward

as an endorsement that positively influences the forecaster’s reputation. The agent thus

receives a benefit according to the function:

R : HT ×Θ → [0, 1]

where R(hT , θ) is the fraction of the total available reward provided to the agent when

his history of reports is hT , and the realized state is θ—or, alternatively, the probability

that the agent receives the reward, so that R(hT , θ) can be interpreted as an endorsement

probability.21 If the agent has exerted effort in t̃ periods, his final payoff is R(hT , θ)− ct̃.

This representation of the contract is equivalent to our menu representation. In partic-

ular, given any contract R, at any time t, it is sufficient to provide the agent with menu

options that will be implemented for the on-path beliefs µs
t for receiving a Poisson signal

s, or a belief µN
t for not receiving any Poisson signal. Therefore, all our results extend

naturally.

21While we allow randomization over the event that the agent receives the full reward, we do not
allow stochastic messages from the principal to the agent. A discussion of how the possibility of such
randomization influences the results is deferred to Section OA 2.3. Allowing stochastic messages
would introduce a second wedge between scoring rules and arbitrary contracts, which we do not
consider to maintain focus on the ability to elicit information over time.
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OA 2.3 Randomized Contracts

Our goal has been to determine the maximum effort implementable within the class of

contracts defined in Section 2.2 and OA 2.2. As histories only include messages sent by the

agent, we implicitly rule out the use of stochastic messages sent from the designer to the

agent (as in, for instance, Deb et al. (2018)). Deterministic mechanisms have significant

practical appeal, as it is not always obvious what a randomization might correspond to

or how a mechanism designer could commit to implementing this. These issues have been

discussed extensively in the contracting literature; we refer the reader to discussions in

Laffont and Martimort (2002) as well as Bester and Strausz (2001) on this point to avoid

detours. Now, randomization provides no additional benefit in implementing maximum

effort with probability 1. But it is natural to ask whether some designer objectives may

yield benefits to randomization. Our analysis speaks to this question as well.

We discuss randomization formally. Let ς = {ςt}t≤T be a sequence of random variables

with ςt drawn from a uniform distribution in [0, 1]. A randomized contract is a mapping

R(·|ς) : HT ×Θ → [0, 1].

Crucially, in randomized contracts, at any time t, the history of the randomization device

{ςt′}t′≤t is publicly revealed to the agent before determining his choice of effort or the

message sent to the designer. The randomization revealed before t affects the agent’s

incentives after time t, and without it, such contracts reduce back to deterministic contracts.

Implementing such randomized contracts would require either a public randomization device

or the principal to commit to a random effort recommendation policy.

It may no longer be without loss of generality to restrict attention to stopping strategies

under a randomized contract. In particular, the agent may decide whether to work or

not, depending on the past realizations of the public randomization. The agent may also

strategically delay exerting effort to wait for the realization of the public randomization. As

a result, simplifying the objective to maximizing the agent’s stopping time is not appropriate

for randomized contracts.

At the same time, our analysis provides some insights into why randomization can

expand the set of implementable strategies. We previously observed that it may be possible

to get the agent to work from µ1 to µ2 and to get the agent to work from µ2 to µ3, but

not from µ1 to µ3. This would occur if the reward necessary to get the agent to work to µ3

were so high that the agent would “shirk-and-lie” at µ1. However, the agent may be willing

to start working at µ1, not knowing whether the reward will be “high” or “low”—but once

the agent starts working, the designer can randomly inflate or decrease the rewards of the

6



agent. Once time has passed, the outcome of the randomization can be revealed, and if

the rewards inflate, the agent has incentives to exert effort for longer in the absence of a

Poisson signal arrival—so that the realized stopping time increases for some realization of

the randomization.

We illustrate this intuition more formally assuming perfect “good-news” learning, i.e.,

λR
1 > 0 and λR

0 = λL
1 = λL

0 = 0, where learning is perfect and only right-biased signal

R arrives with positive probability. We describe the resulting solution in Section OA 5.

In this setting, our results imply that, under deterministic contracts, a V-shaped scoring

rule with parameters r0 = 1 and r1 ∈ [0, 1] implements the effort-maximizing contract R;

in particular, Section OA 5 characterizes when in fact effort-maximizing contracts require

r1 < 1. Recall that we denote τM as the stopping time in the effort-maximizing deterministic

contract and let µN
τM be the stopping belief when no Poisson signal is observed. Let δ ∈

(0, 1 − r1] be the maximum number such that (1) the agent has strict incentives to exert

effort until time 2τM
3 absent signal arrival given menu options (1, 0) and (0, r1 − δ); and (2)

the agent can be incentivized to exert effort given menu options (1, 0) and (0, r1 + δ) given

belief µN
τM
2

. Consider the randomized contract R̂ that provides menu options (1, 0) and

(0, r1 − δ) from time 0 to τM
2 , and after time τM

2 , offers menu options (1, 0) and (0, r1 + δ)

with probability ϵ2, offers menu options (1, 0) and (0, 0) with probability ϵ, and offers the

same menu options (1, 0) and (0, r1 − δ) otherwise. With sufficiently small ϵ > 0, the agent

still has incentives to exert effort at any time t ≤ τM
2 . Moreover, after time τM

2 , with

probability ϵ2, the realized menu options are (1, 0) and (0, r1 + δ), and the agent can be

incentivized to exert effort to a time strictly larger than τM in the absence of a Poisson

signal.22

OA 3 Additional Review of Scoring Rules

A scoring rule is proper if it incentivizes the agent to truthfully report his belief to the

mechanism, i.e.,

Eθ∼µ[P (µ, θ)] ≥ Eθ∼µ

[
P (µ′, θ)

]
, ∀µ, µ′ ∈ ∆(Θ).

22This kind of modification may be of interest to a designer who only values extreme posterior
beliefs. For instance, suppose the designer faced a decision problem where the possible decisions
belonged to a set A = {0, 1}. Consider a designer payoff function of v(0, θ) = 0 for all θ ∈ Θ, and

v(1, 0) = 1, v(1, 1) = − 1−µN
τM

µN
τM

; plainly, the designer only seeks to change her action from 1 to 0 if

the posterior belief is below µN
τM . In this case, the payoff under any deterministic contract is 0.

However, under the randomized contract outlined, the designer would obtain a positive payoff when
implementing the identified randomized contract.
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By the revelation principle, it is without loss of generality to focus on proper scoring rules

when the designer adopts contracts that can be implemented as a scoring rule.

Lemma 7 (McCarthy, 1956). For any finite state space Θ, a scoring rule P is proper if

there exists a convex function UP : ∆(Θ) → R such that

P (µ, θ) = UP (µ) + ξ(µ) · (θ − µ)

for any µ ∈ ∆(Θ) and θ ∈ Θ where ξ(µ) is a subgradient of UP .
23

OA 4 Comparative Statics of Scoring Rules

As discussed in Section 3.4, the ideal situation cannot be implemented in dynamic con-

tracts since we claim that the effort-maximizing static scoring rule at time τ is not effort-

maximizing at time t < τ . However, this argument alone is insufficient since, in earlier

times, the agent is more uncertain about the states and hence it is easier to incentivize. In

this appendix, we formalize this intuition using comparative statics on static scoring rules.

To simplify the exposition, we consider a specific static environment where , if the

agent exerts effort, the agent may receive an informative signal in {R,L} that is partially

informative about the state. Otherwise, the agent does not receive any signals and the prior

belief is not updated. Let fθ,s ∈ (0, 1) be the probability of receiving signal s conditional

on state θ, with
∑

s∈{R,L} fθ,s = 1 for any θ. That is, signals are not perfectly revealing.

We focus on the case when the prior D < 1
2 .

Proposition 1 shows that the utility function of the effort-maximizing scoring rule is V-

shaped with a kink at the prior, that is, the effort-maximizing scoring rule offers the agent

the following two options: (0, 1) and ( D
1−D , 0). The agent with prior belief D is indifferent

between these two options. Moreover, any belief µ > D would strictly prefer (0, 1) and any

belief µ < D would strictly prefer ( D
1−D , 0).

Next, we conduct comparative statics. The expected score increase for exerting effort

under the effort-maximizing scoring rule is

Inc(D) ≜ (1−D) · f0,L · D

1−D
+D · f1,R −D = D(f0,L + f1,R − 1).

Since f0,L > f1,L and f1,R > f1,L, we have f0,L + f1,R > 1. Therefore, the expected score

increase is monotone increasing in prior D. That is, the closer the prior is to 1
2 , the easier

23Here for finite state space Θ, we represent θ ∈ Θ and µ ∈ ∆(Θ) as |Θ|-dimensional vectors
where the ith coordinate of θ is 1 if the state is the ith element in Θ and is 0 otherwise, and the ith
coordinate of posterior µ is the probability of the ith element in Θ given posterior µ.
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it is to incentivize the agent to exert effort.

Next, we conduct comparative statics on prior D′ by fixing the scoring rule P to be

effort-maximizing for D, i.e., P is the V-shaped scoring rule with a kink at D. The expected

score increase for exerting effort given scoring rule P is

Inc(D′;D) ≜ (1−D′) · f0,L · D

1−D
+D′ · f1,R −D′

= D′(f1,R − 1− f0,L · D

1−D
) + f0,L · D

1−D
.

Since f1,R < 1, the strength of the incentives the designer can provide is strictly decreasing

in prior D′. Therefore, even though the prior is closer to 1
2 , it is easier to incentivize the

agent to exert effort; the effort-maximizing scoring rule for lower priors may not be sufficient

to incentivize the agent (assuming that the cost of effort is the same in both settings).

OA 5 Complete Solution under Perfect Good News

Learning

OA 5.1 Effort-Maximizing Contracts

Here we describe our findings in the model where the time interval is ∆ and take the ∆ → 0

limit. We focus on the setting with a single perfectly revealing signal, i.e.,

λL
0 = λL

1 = λR
0 = 0, λR

1 > 0.

We take the horizon T to be sufficiently large so that it will not be a binding constraint.

Illustrating this solution highlights the tensions in maximizing the incentives to exert effort

at different points in time.

For this learning environment, Theorem 3 implies that a scoring rule with two reward

functions implements maximum effort: (1, 0), corresponding to a guess of state 0, and

(0, r1), corresponding to a guess of state 1. The value of r1, the reward when guessing state

1 (correctly), depends on the initial prior, D (which coincides with µN
0 ).

We describe how r1 is determined. Providing a higher reward for guessing state 1

encourages the agent to continue exerting effort, even as this state appears increasingly

unlikely. In fact, one can show the agent is indifferent between continuing effort and selecting

a reward when µN
τ = c

λR
1 r1

(see Appendix for details). If the event that θ = 1 is not too

likely according to the initial prior, then setting r1 = 1 gets the agent to work for as long as

possible. However, if the probability that θ = 1 is initially high, setting r1 = 1 may violate
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Figure 12: Value function with perfect learning; r1 = 1, c = .2, λR
1 = 1.

the agent’s initial incentive constraints.

Figure 12 illustrates the agent’s value function when r1 = 1, assuming the agent works

until µN
τ = c

λR
1
, along with the expected payoff when selecting each reward function. While

the adverse selection constraint holds for this contract, moral hazard is violated if the event

that θ = 1 is sufficiently likely initially. This can be seen by observing that the value

function is below the expected payoff when choosing (0, 1), so the agent would prefer to

guess state 1 rather than exert any effort at all.

In this case, lowering r1 is necessary to motivate the agent to begin working. The cost,

of course, is that now the agent stops working once µN
τ = c

λR
1 r1

, so that the agent stops

sooner when r1 is lower. Now, when µN
0 < c/λR

1 , it is impossible to induce the agent to

acquire any information at all. Outside of this range, a pair of thresholds, µ∗, µ∗∗ satisfying

c/λR
1 < µ∗ < µ∗∗ < 1 determine the form of the effort-maximizing scoring rule:

• For c/λR
1 ≤ µN

0 ≤ µ∗, the effort-maximizing scoring rule sets r1 = 1.

• For µ∗ < µN
0 ≤ µ∗∗, the effort-maximizing scoring rule sets r1 < 1, with the exact

value pinned down by the condition that at time 0, the agent is indifferent between

(i) working absent signal arrival until their belief is c/(λR
1 r1) and (ii) never working.

• For µN
0 > µ∗∗, it is impossible to induce the agent to acquire any information.

Of course, when µN
0 ∈ (µ∗, µ∗∗), if the agent works, beliefs may eventually leave this region.

If the agent had started at such a belief, more effort could be induced by setting r1 = 1. On
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the other hand, it is clear why this reoptimization cannot help. When µN
0 ∈ (µ∗, µ∗∗), r1 < 1

will be set so that the initial moral hazard constraint binds—but if the agent expected r1

to increase later, he would simply shirk and claim to have observed a Poisson signal once

the reward is increased to 1. Given that such adjustments are impossible, effort-maximizing

mechanisms cannot utilize dynamics and are therefore static.

The lesson is that the tensions between optimizing incentives to exert effort both earlier

and later may be unavoidable. A designer may be unable to re-optimize rewards because

the re-optimized rewards would violate an incentive constraint at some other time. One

deceptive aspect of this example is that the agent’s moral hazard constraint only ever binds

at the stopping belief and (possibly) at their initial belief. A technical challenge we face in

Section 5.3, for instance, is that if signals are not fully revealing, it may be that the moral

hazard constraint binds somewhere “in between.” This feature will imply extra reward

functions should be provided to the agent in the effort-maximizing scoring rule. Still, this

example illustrates some of the intuition on how effort-maximizing rewards vary with the

agent’s beliefs.

OA 5.2 Details Behind the Calculation

Here we provide some additional details behind the calculations in Section OA 5. We

consider any scoring rule which involves the choice between (r0, 0) and (0, r1), with the

former being chosen when stopping in the absence of any signal arrival and the latter being

chosen if one does occur. We note that stopping and accepting contract (r0, 0) delivers

payoff r0(1 − µN
t ); if, at time τ , the agent continues for a length ∆ and then stops, the

payoff is:

−c∆+ (1− λR
1 µ

N
τ ∆)r0(1− µN

τ+1) + λR
1 µ

N
τ ∆r1.

Imposing indifference between stopping and continuing yields:

r0
µN
τ − µN

τ+∆

∆
+ λR

1 µ
N
τ r1 − λR

1 µ
N
τ (1− µN

τ+1)r0 = c

As ∆ → 0,
µN
τ −µN

τ+∆

∆ → µ̇N
τ ; substituting in for this expression and using continuity of

beliefs yields the expression for the stopping belief and the stopping payoff:

r0λ
R
1 µ

N
τ (1− µN

τ ) + λR
1 µ

N
τ r1 − λR

1 µ
N
τ (1− µN

τ )r0 = c.

Algebraic manipulations show this coincide with the expression for the stopping belief from

the main text. In particular, note that this stopping belief is independent of r0 (as in the
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main text). From this, it immediately follows that r0 = 1 maximizes effort, as it does

not influence the length of time the agent works but may make the agent more willing to

initially start exerting effort.

We now solve for the agent’s value function, V (µN
t ), for all agent beliefs µN

t > µN
τ

(assuming the agent works until time τ—recalling that beliefs “drift down”). Writing out

the HJB yields:

V (µN
t ) = −c∆+ λR

1 µ
N
t ∆r1 + (1− λR

1 µ
N
t ∆)V (µt+1).

From this, we obtain the following differential equation:

V ′(µN
t )λR

1 µ
N
t (1− µN

t ) = −c+ λR
1 µ

N
t (r1 − V (µN

t )).

Solving this first-order differential equation gives us the following expression for the value

function, up to a constant k (which is pinned down by the condition V (µN
τ ) = (1− µN

τ )):

V (µN
t ) = k(1− µN

t ) +
r1λ

R
1 − c+ c(1− µN

t ) log
(
1−µN

t

µN
t

)
λR
1

.

Note that V ′′(µN
t ) > 0 for this solution, as well as that V ′(c/(r1λ

R
1 )) = −1, so that the

value function is everywhere above (1−µN
t ). Thus, the agent would never shirk and choose

option (1, 0) prior to time τ ; so, as long as the value function is also above r1µ
N
t , the moral

hazard constraint does not bind before τ . This shows that r1 should be set so that the

initial moral hazard constraint holds, as discussed in the main text.

OA 6 Two Periods

In this section, we consider a simple two-period model and show that in the two-period

environment, without any assumptions on the information acquisition process, the optimal

contract always has a static implementation as a scoring rule.

Proposition 2. In the two-period environments, there exists a scoring rule that implements

maximum effort.

Proof. First, note that if in the optimal contract, the agent only exerts effort for one period

or does not exert effort at all, the contract for the second period is irrelevant; hence, it is

immediate that there exists a scoring rule that implements maximum effort.

Now we focus on the case in which the agent can be incentivized to exert effort in

two periods. Without loss of generality, we can assume that the principal offers a menu
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M2 = {rs2}s∈S ∪ rN2 at time 2, and a menu M1 = {rs1}s∈S ∪ M2 at time 1. In this case,

consider another menu M̂ where M̂1 = M̂2 = M1. The agent’s incentive to exert costly

effort weakly increases in the first period as his continuation payoff weakly increases. Thus,

the agent exerts effort for at least one period. Moreover, observe that if the agent knows

that he will choose not to exert effort in the second period, he could pretend to receive a

Poisson signal in the first period and obtain a payoff from menu M1 before entering the

second period. Therefore, by including M1 in M̂2, the agent’s payoff from not exerting

effort remains the same. On the other hand, the agent has more options to choose from in

the second period if he exerts effort. His incentive for exerting effort also weakly increases

in the second period.

Combining all cases, there exists a scoring rule that implements maximum effort.

Intuitively, the tension in dynamic incentives is that if we provide a higher reward to

the agent at certain periods, the agent has a stronger incentive to exert effort in previous

periods but a weaker incentive to exert effort in later periods. However, in the two-period

model, the latter effect disappears since when we adjust the rewards in the second period,

there won’t be any future periods. Therefore, a static implementation, i.e., a scoring rule,

implements the maximum effort.

13
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