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1 Math Programming Basics

1.1 Linear Programming

1.2 Convex Optimization

Some properties of convex functions:

• If f1(x) and f2(x) are convex functions, and a, b ≥ 0 then f(x) = af1(x)+
bf2(x) is a convex function

• If f(x) is a convex function and x = Ay + b, then g(y) = f(Ay + b) is a
convex function

• If fi(x) is a convex function then h(x) = maxi fi(x) is a convex function

The notion of epigraph connects convex function and convex set:

epif = {(x, y) | x ∈ S, f(x) ≤ y}

then f : S 7→ R is convex if and only if epif is convex. For instance, we can
prove

g(x) = ln

(
n∑
i=1

pi exp(bixi + ci)

)
pi > 0

is a convex function by checking the epigraph.

The combination of cone and convex set leads to convex cone such as norm cone
or second-order cone {(x, t) : ‖x‖ ≤ t}.

Some operations that preserve convexity:

• Intersection
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• Affine function, such as projection {x | ∃y : (x,y) ∈ C} where C is convex
set; hyperbolic cone {x : ‖Ax+ b‖2 ≤ c′x+ d}.

• Perspective, C convex ⇔ {(x, t) : x/t ∈ C, t > 0} convex

Example 1.1. f(x,y) : Rm × Rn is jointly convex function and C is a convex
set. Suppose

g(x) = min
y∈C

f(x,y)

in which the minimization is always achievable, then g(x) is also a convex func-
tion.

Proof. We first transform the function to a feasibility problem by epigraph, then
apply the property of projection.

Example 1.2. Suppose f(x) is convex on x ∈ Rn, then

g(x, y) = yf(x/y)

is a convex function on y > 0.

Consider a constrained optimization problem

min f(x) s.t. x ∈ P

where P = {x : gj(x) ≤ 0, j = 1, . . . , p, hi(x) = 0, i = 1, . . . ,m}, the KKT
condition derives the optimal condition.

Theorem 1.1. Necessary condition of KKT conditions

• x̄ is local minimum of P

• I = {j : gj(x̄) = 0} , set of tight constraints

• Constraint qualification condition (CQC) : The vectors ∇gj(x̄), j ∈ I and
∇hi(x̄), i = 1, . . . ,m are linearly independent

Then, there exists vector (u,v):

1. ∇f(x̄) +
∑p
j=1 uj∇gj(x̄) +

∑m
i=1 vj∇hj(x̄) = 0

2. u ≥ 0

3. ujgj(x̄) = 0, j = 1, . . . , p

To discuss the duality under convex optimization setup, we need to use gener-
alized inequalities. For example, when dealing with linear constraints in LP, we
have

Ax ≥ b⇔ Ax− b ≥ 0⇔ Ax− b ∈ K
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where
K = Rm+

Similarly, we can extend it to cone constraints

Ax �K b⇔ Ax− b �K 0⇔ Ax− b ∈ K

Frequently, we will face two special cones: second-order cones

Ln+1 =

(x0, x1, . . . , xn︸ ︷︷ ︸
x

) |‖x‖2 ≤ x0


and symmetric positive semi-definite cone

Sn+ = {X|X symmetric positive semidefinite matrix }

Then, we introduce dual cone to characterize the conic duality.

K∗ =
{
y : y>x ≥ 0∀x ∈K

}
ConsiderK ⊂ Rn a non-empty set and the setK∗ =

{
z ∈ Rn|z>x ≥ 0,∀x ∈K} .

Then we have that

1. K∗ is a closed convex cone

2. If intK 6= ∅ then K∗ is pointed

3. If K is a closed convex pointed cone, then intK∗ 6= ∅

4. If K is a closed convex cone, then so is K∗ and (K∗)∗ = K. The three
most common cones are self-dual.

Now we present the primal and dual under conic inequality

Z1 = inf c>x
s.t. Ax �K b

Z2 = sup b>y
s.t. Ay = c

y �K∗ 0

Consider the conic problem (CP ) and its dual problem (CD)

1. The dual to (CD) is equivalent to (CP )

2. For any x feasible for (CP ) and y feasible for (CD) we have that c>x ≥
b>y

3. If (CP ) is bounded below and Ax − b ∈ intK for some x, then (CD) is
solvable and Z1 = Z2. (analogous result if (CD) is bounded above and
strictly feasible).
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4. If either (CP ) or (CD) is bounded and strictly feasible; then any primal
dual pair (x,y) is an optimal solution

(a) if and only if c>x = b>y
(b) if and only if y>(Ax− b) = 0

1.2.1 Second-order Cone Programming

The general model of SOCP is

min c>x
s.t. ‖Aix+ bi‖2 ≤ c>i x+ di i = 1, . . . , N

Ln+1 = {(x0,x)|‖x‖2 ≤ x0}
We can represent the constraints as

‖Aix+ bi‖2 ≤ c
>
i x+ di

m[
c>i x+ di
Aix+ bi

]
� Lni0⇔

[
c>i x

]
� Lni

[
−di
−bi

]
Moreover, an useful and common structure for second-order cone is

x>x ≤ st(s, t ≥ 0)⇔
∥∥∥∥ x

(s− t)/2

∥∥∥∥
2

≤ (s+ t)/2⇔

 (s+ t)/2
x

(s− t)/2

 �Ln+2 0

Many typical math programmings can be cast into SOCP

• Linear optimization: set A = 0, b = 0

• Convex quadratic: use the property that PSD M = A′A and then trans-
form the common structure

Recall the ambiguity set with generalized moments. If epigraph of g(z) is second
order cone representable, then we could replace g(z) by u and add g(z) ≤ u to
support. Similar idea is applicable in mean-variance ambiguity set.

1.2.2 Semidefinite Programming

The general model of SDP is

(P :) min C •X
s.t. Ai •X = bii = 1, . . . ,m

X � 0
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Where
X � 0⇔X ∈ Sn+

Sn+ = {X ∈ Rn×n : X> = X,Xpositive semidefinite}

Many typical math programmings can be cast into SDP

• Linear optimization: setX as the diagonal matrix and also represent c,Ai

as diagonal matrices.

• Convex quadratic: use the property of Schur complement, suppose B � 0[
B C ′

C D

]
� 0⇔D −CB−1C ′ � 0

• Quadratic constraints in robust optimization: apply the S-lemma

z′Az + 2b′z + c ≥ 0 ∀z : z′A1z + 2b′1z + c1 ≥ 0

m[
c b′

b A

]
−τ

[
c1 b′1
b1 A1

]
� 0, τ ≥ 0

• Positive polynomial: a polynomial f(z) with even degree k is non-negative
if and only if it is sum of squares, which means f(z) = v(z)′Qv(z) where

v(z) =
(
1, z, z2, . . . , zk/2

)′
,Q � 0 i.e., Q = L′L

2 Satisficing & Robust Modeling

We first introduce uncertain LOP:

min c(z)′x
s.t. A(z)x ≥ b(z)

where A(z), b(z), c(z) are affine in z, and they can be generally expanded as:

A(z) = A0 +
∑
i∈[Iz ]

Aizi

b(z) = b0 +
∑
i∈[Iz ]

bizi

c(z) = c0 +
∑
i∈[Iz ]

cizi

The impact of uncertainty may cause the objective is not attainable or even
solution is not feasible.
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2.1 Satisficing Modeling

The idea of satisficing modeling is to seek a good enough choice: specify a
target objective and then find a solution that satisfy all constraints with high
probability.

The first satisficing model is P-Model, which assumes a known distribution but
generally leads to a non-linear optmization problem:

max lnP(A(z̃)x ≥ b(z̃))
s.t. x ∈ X

Evaluating the objective is generally NP-hard because it’s related to finding
volume of polyhedron. Some models are tractable:

The second satisficing model is Chance Constrained Model, which is more com-
mon than P-Model:

min c′x
s.t. P[A(z̃)x ≥ b(z̃)] ≥ 1− ε

x ∈ X

These two models are reasonable but hard to optimize, needless to say we do
not know the distribution. In order to generalize the problem, let’s introduce
satisficing decision criterion.

First we define tolerance set as T (x) = {z ∈ W|A(z)x ≥ b(z)}. Then given a
family of tolerance sets, T (x) ⊆ W , for x ∈ X , a function ν : RN 7→ R∪ {−∞}
is a satisficing decision criterion if and only if it has the following two properties:
For all x, y ∈ X ,

1. (Satisficing dominance) If T (y) ⊆ T (x), then ν(x) ≥ ν(y)

2. (Infeasibility) If T (x) = ∅ then ν(x) = −∞

Theorem 2.1. A function ν : RN 7→ R∪{−∞} is a satisficing decision criterion
if and only if ν(x) = maxα∈S{ρ(α)|z ∈ T (x),∀z ∈ U(α)} for some function
ρ : S → R ∪ {−∞} on domain S ⊆ RP , for some P and for some family of
nonempty uncertainty sets U(α) ⊆ W defined for all α ∈ S.

With the help of theorem above, we can formulate a satisficing model as:

max ρ(α)
s.t. A(z)x ≥ b(z) ∀z ∈ U(α)

x ∈ X
α ∈ S

Generally it’s a difficult problem and we can look at a simple case:
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Example 2.1. Assume S = R+, ρ(α) = α, and the uncertainty set U(α) is
nondecreasing in α (size of uncertainty set), then

νR(x) = max
α≥0
{α|A(z)x ≥ b(z) ∀z ∈ U(α)}

which characterizes the largest possible size of uncertainty set for which x would
remain feasible.

The example above is Robustness Optimization, which is somewhat equivalent
to P-Model. They both determine the most robust solutions that can withstand
all perturbations from the largest possible uncertainty set.

2.2 Robust Optimization

In many practical cases, we desire to minimize cost, while ensuring solution
remains feasible for given size of uncertainty set. This idea leads to the devel-
opment of robust optimization:

min c′x
s.t. A(z)x ≥ b(z) ∀z ∈ U(r)

x ∈ X

In modern robust optimization, usually we also have uncertainty for objective
functions and thus we consider the minmax instead of min, which means opti-
mizing the worst-case performance.

min maxz∈U(r) c(z)′x
s.t. A(z)x ≥ b(z) ∀z ∈ U(r)

x ∈ X

Moreover, we care about

• Convex uncertainty set (tractable and conic representable)

• Adjustable size to vary conservativeness

• Important to relate meaning to the size r

It’s crucial to find reasonable r to avoid over-conservative. Similarly, in the
setting of Robustness Optimization, we need to set the cost budget, which can
be somehow calculated by binary search.
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3 Robust Linear Optimization

3.1 The Price of Robustness

First we will put robust optimization in linear condition to understand some key
ideas, and then extend to more complicated conditions. We define the robust
counterpart as:

min maxz∈U(r) c(z)′x
s.t. A(z)x ≥ b(z) ∀z ∈ U(r)

x ∈ X

which is equivalent to

min t
s.t. A(z)x ≥ b(z) ∀z ∈ U(r)

c(z)′x ≤ t ∀z ∈ U(r)
x ∈ X

Since we consider linear case, constraints can be split in rows. Moreover, we
know A(z), b(z), c(z) can be expanded in terms of zi, so we have

am(z)>x ≥ bm(z)
m∑

i∈[Iz ]

(
bim − e>mAix

)︸ ︷︷ ︸
=ym

zi ≤ e>mA0x− b0m︸ ︷︷ ︸
=tm

Ignore index m for simplicity, focus on robust counterpart

y>z ≤ t ∀z ∈ U(r)
m

max
z∈U(r)

y>z ≤ t

We show some widely used uncertainty sets:

• Discrete scenarios with U =
{
z1, . . . , zS

}
, and it can be extended to convex

combination

• Polyhedra with U = {z|∃u : Cz + Du ≤ d}, equivalent to exponential
extreme points

• Box with U = {z | ‖z‖∞ ≤ 1}

• 1-Norm with U(r) = {z | ‖z‖1 ≤ r}

Taking the dual of maximization problem in robust counterpart generates a
minimization problem with the same optimal value because of strong duality.
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What’s more, in order to guarantee the minimum is less than some value, we
only need to find a feasible solution. In this way, there is no need solving a
sub-problem but building a linear programming problem as a whole.

{(y, t)|y′z ≤ t ∀z ∈ U}
m(y, t) |

∃p ≥ 0
p′d ≤ t
C ′p = y
D′p = 0


We introduce the notion ”Budget of Uncertainty Set”, which characterizes the
price of robustness.

U(r) = {z|‖z‖∞ ≤ 1, ‖z‖1 ≤ r}

=

z |
∃u :
z ≤ u
−z ≤ u

0 ≤ u ≤ 1
1′u ≤ r


We know the optimal solution is from basic feasible solutions, so the parameter
r above controls how many uncertain variables we allow to vary at the same
time. In other words, it somehow removes the over-conservative worst case.
Suppose data is symmetrically distributed, probability of every data to vary in
the direction of violation is low. Even if uncertain data are correlated, as long
as we could figure out underlying independent factors, the argument and result
still hold.

Specifically, [1] discusses the problem by assuming z are independent, symmetric
and bound random variables in [−1, 1]. It gives a probability guarantee of
constraint violation:

P [y′z̃ > t] ≤ 1

2Iz

(1− µ)

Iz∑
l=bνc

(
Iz
l

)
+ µ

Iz∑
l=bνc+1

(
Iz
l

) ≈ 1−Φ

(
r − 1√
n

)

For a fixed error bound, we can roughly get the relation of r and n as r ≈ C
√
n.

As the dimension of problem increases, the budget of uncertainty increases sub-
linearly, which means we only need to sacrifice a little feasibility guarantee in
exchange for near-optimality.

Let’s explore the robust counterpart from another perspective. Given biaffine
function φ : X × Z 7→ R, where X,Z are polyhedra. We have following two
properties:
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1. minz̄∈Z φ(x, z̄) ≤ maxx̄∈X φ(x̄, z)

2. minz∈Z maxx∈X φ(x, z) = maxx∈X minz∈Z φ(x, z)

3. maxz∈∩Zi x
>z = minxi,i∈[I]

{∑
i∈[I] maxz∈Zi

x>i z
∣∣∣ ∑∑∑i∈[I] xi = x

}
The third property is a direct application of first two, and we provide the proof
sketch: First use zi ∈ Zi, zi = z to replace z ∈ Zi, then we relax the equality
constraints to construct max-min structure on LHS. Observing the biaffine
function, it’s valid to switch max and min. Finally re-arrange the RHS, and
thus we conclude the infimum convolution for polyhedra.

With the knowledge above, we are able to deal with more complex uncertainty
sets, such as the intersection of polyhedra. We still use the example from [1],
and by the definition of dual norm, we have:

y>z ≤ t ∀z ∈ {z | ‖z‖∞ ≤ 1, ‖z‖1 ≤ r}
m

max
z1:‖z1‖∞≤1

y>1 z1 + max
z2:‖z2‖1≤r

y>2 z2 ≤ t

y1 + y2 = y
m

‖y1‖1 + r‖y2‖∞ ≤ t
y1 + y2 = y

It’s straightforward to reformulate the problem and get a tractable LP:

‖y1‖1 + r ‖y2‖∞ ≤ t
y1 + y2 = y

m
‖y1‖1 + r ‖y − y1‖∞ ≤ t

m
1′s+ rt ≤ t
t1 ≥ y − y1

t1 ≥ −y + y1

s ≥ y1

s ≥ −y1

Compared with the method in [1], this formulation requires more variables.

3.2 Robust Optimization Duality

Let’s assume feasible and bounded uncertainty set, and revisit the original ro-
bust optimization:

min
x

max
z0∈Z0

a0(z0)>x

s.t. max
zm∈Zm

{
bm(zm)− am(zm)>x

}
≤ 0 m ∈ [M ]
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We treat the problem in a more straightforward manner, relaxing the constraints
directly:

min
x

 max
p≥0,zm∈Zm,m∈{0,...,M}

a0(z0)>x+
∑

m∈[M ]

(
bm(zm)− am(zm)>x

)
pm




All the maximum operators are aggregated so that we end up with min-max
problem. Unfortunately, the objective function is not affine in (p, zm) so we are
not able to switch min and max directly.

For ease of exposition, we consider the following problem:

max
p≥0,z∈Z

(
b(z)− a(z)>x

)
p

Z = {z ∈ RI | ∃u : Cz +Du ≤ d}

Then the perspective function plays an important role by change of variables:
z to z/p, u to u/p and solves the following problem instead:

max
p≥0,(p,z)∈Z̄

(
b(z/p)− a(z/p)>x

)
p

Z̄ = {(p, z) ∈ RI+1 | ∃u : Cz +Du ≤ dp}

In this way, we transform the objective function to a biaffine function and
thus can apply the technique above. Finally, we construct the dual of robust
optimization and strong duality holds:

max
∑

m∈[M ]

bm(zm/pm)pm

s.t.
∑

m∈[M ]

am(zm/pm)pm = a0(z0)

z0 ∈ Z0

p ≥ 0
(pm, zm) ∈ Z̄m,m ∈ [M ]

Remark. A closer look at the perspective transformation leads to careful anal-
ysis:

(P1)
max pt+ y>zp
s.t. Cz +Du ≤ d

p ≥ 0

versus

(P2)
max pt+ y>z
s.t. Cz +Du ≤ dp

p ≥ 0
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To verify the equivalence between P1 and P2, it’s trivial for p > 0 but not
p = 0. Specifically, if p∗ = 0 in the optimal solution, we can argue that both of
the corresponding objective values are either 0 or unbound at the same time.

Now we have the dual of robust optimization problem and we’d like to transform
it back to get more intuition.

Lemma 3.1.

Z̄ = {(p, z) ∈ RI+1 | ∃u : Cz +Du ≤ dp}

If Z is bounded, there does not exist z 6= 0 such that (0, z) ∈ Z̄.

Based on the lemma, for bounded polyhedra Zm, we can develop following
equivalence:

max
∑

m∈[M ]

bm(zm/pm)pm

s.t.
∑

m∈[M ]

am(zm/pm)pm = a0(z0)

p ≥ 0
z0 ∈ Z0

(pm, zm) ∈ Z̄m,m ∈ [M ]

=

max
∑

m∈[M ]

bm(zm)pm

s.t.
∑

m∈[M ]

am(zm)pm = a0(z0)

p ≥ 0
z0 ∈ Z0

zm ∈ Zm,m ∈ [M ]

On top of that, we reach the key conclusion: Primal Worst = Dual Best.

min max
z0∈Z0

a0(z0)>x

s.t. am(zm)>x ≥ bm(zm) ∀zm ∈ Zm,
m ∈ [M ]

=

max
∑

m∈[M ]

bm(zm)pm

s.t.
∑

m∈[M ]

am(zm)pm = a0(z0)

p ≥ 0
z0 ∈ Z0

zm ∈ Zm,m ∈ [M ]

Actually, we can extend the result to unbounded polyhedra Zm, which requires
feasibility for some p > 0. Then we can remove the case of p = 0, and obtain
the limit by convexity:

max
∑

m∈[M ]

bm(zm/pm)pm

s.t.
∑

m∈[M ]

am(zm/pm)pm = a0(z0)

p ≥ 0
z0 ∈ Z0

(pm, zm) ∈ Z̄m,m ∈ [M ]

=

sup
∑

m∈[M ]

bm(zm/pm)pm

s.t.
∑

m∈[M ]

am(zm/pm)pm = a0(z0)

p > 0
z0 ∈ Z0

(pm, zm) ∈ Z̄m,m ∈ [M ]

Since we require that p > 0 is feasible for the problem, the equivalence of
perspective transformation is straightforward.
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4 Distributionally Robust Optimization

4.1 Choice under Risk and Ambiguity

We first introduce the notion of choice under uncertainty that people always
maximize their expected utility with following properties:

• Representation, EP [U(r̃)]

• r̃ ∼ P

• EP [·] denotes taking expectation with respect to P

• Utility function, U : R 7→ R

• Increasing function, the higher the better

• Certainty equivalent, CE[r̃] = U−1 (EP [U(r̃)])

In decision-making process, people tend to be risk aversion, which means con-
cave utility function and U(CE[r̃]) ≤ U(EP[r̃]). A more generalization of risk
aversion in economics is convex preference, which says if r̃ � z̃, s̃ � z̃ then

λr̃ + (1− λ)s̃ � z̃ ∀λ ∈ [0, 1]

Lemma 4.1. Preference measure ρ is consistent with convex preference if and
only if ρ is quasiconcave:

ρ(λr̃ + (1− λ)s̃) ≥ min{ρ(r̃), ρ(s̃)} ∀λ ∈ [0, 1]

We focus on concave utility and worst-case expectation over ambiguity set, and
thus construct the objective

inf
P∈F

EP [U(r̃)]

which is quasi-concave, and also consistent with diverfication preference.

An alternative modeling approach is a convex combination of worst-case perfor-
mance and best-case performance:

ρα(r̃) = (1− α) inf
P∈F

EP [U(r̃)] + α sup
P∈F

EP [U(r̃)]

but it does not satisfy convex preference in general.
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4.2 Distributionally Robust Linear Optimization

We desire to optimize the worst-case performance and for ease of exposition, we
consider minimize the worse-case dis-utility with the formulation:

min sup
P∈F

EP
[
U0(a0(z̃)>x+ b0(z̃))

]
s.t. sup

P∈F
EP
[
Um(am(z)>x+ bm(z̃))

]
≤ τm m ∈ [M ]

x ∈ X

where U0, . . . , UM are concave utility functions. However, evaluating expected
utility is typically hard even for simple utility functions, and tractability also
highly depends on ambiguity set F . We provide some tractable configurations
of F to best of our knowledge:

1. Uncertain locations z ∈ Z

• Ambiguity set

F =

{
P ∈ P0(RI)

∣∣∣∣ z̃ ∼ P
P[z̃ ∈ Z] = 1

}
• It can be transformed to a robust optimization model without con-

cern of utility

sup
P∈F

EP
[
U(a(z)>x+ b(z̃))

]
⇔ max

z∈Z
U(a(z)>x+ b(z)) ≤ U(τ)

m

a(z)>x+ b(z) ≤ τ ∀z ∈ Z

2. Known locations and scenarios s̃ ∈ [S] with ambiguous probabilities

• Ambiguity set

• Discrete scenarios s̃ that takes values in [S], with P[s̃ = s] = ps and
z̃ = ẑs when s̃ = s, but probability p is uncertain

• If polyhedral P, say

P =
{
p | ∃q : Rp+ Sq ≤ t,1>p = 1,p ≥ 0

}
Then we have

sup
P∈F

EP
[
U(a(z)>x+ b(z̃))

]
≤ τ

m

max
p∈P

∑
s∈[S]

psU
(
a(ẑs)>x+ b(ẑs)

)
≤ τ
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and its robust counterpart

α+ β>t ≤ τ

R>β + 1>α ≥

 U
(
a(ẑ1)>x+ b(ẑ1)

)
...

U
(
a(ẑS)>x+ b(ẑS)

)


S>β = 0
β ≥ 0, α ∈ R

3. Known locations and scenarios with ambiguous probabilities and moments

• Ambiguity set

F =

P ∈ P0(RIz × [S])

∣∣∣∣∣∣∣∣∣∣
(z̃, s̃) ∼ P
EP [g(z̃)] = σ
P [z̃ = ẑs | s̃ = s] = 1
P [s̃ = s] = ps
p ∈ P,σ ∈ S


• On top of case 2, we have additional moments information such as

means and covariance. In general, it can be EP [g(z̃)] = σ, for some
mapping function g : RIz 7→ RIu .

• In the formulation, we also need moments constraint
∑
s∈[S] psg(ẑs) =

σ. If S is polyhedra as well as P , we could solve a linear program-
ming. Consider the simplest case with linear utility and simplex
probability support. Since the optimal solution must be BFS, we are
able to get sparse probability distribution on worst-case solution.

4. Uncertain locations and scenarios with ambiguous probabilities

• Ambiguity set

F =

P ∈ P0(RIz × [S])

∣∣∣∣∣∣∣∣
(z̃, s̃) ∼ P
P [z̃ ∈ Zs | s̃ = s] = 1
P [s̃ = s] = ps
p ∈ P


• Compared with case 2, under some scenario, we only know the sup-

port of z̃ instead of specific value, so we have to maximize over z̃ ∈ ‡s
in the formulation with linear utility

sup
P∈F

EP
[
a(z)>x+ b(z)

]
⇔

max
∑
s∈[S]

ps max
z∈Zs

a(z)>x+ b(z)

s.t. p ∈ P

m

max
∑
s∈[S]

ps
(
a(zs)

>x+ b(zs)
)

s.t. p ∈ P
zs ∈ Zs,∀s ∈ [S]
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• Assume there exists p > 0,p ∈ P, we can use perspective function
to reformulate as linear programming. Similarly, the results can be
extend to convex piecewise affine utility function.

5. Uncertain locations with ambiguous moments

• Ambiguity set

G =

P ∈ P0(RIz )

∣∣∣∣∣∣∣∣
z̃ ∼ P
EP [g(z̃)] = σ
P [z̃ ∈ Z] = 1
for some σ ∈ S


• On top of case 1, we have additional moments information such as

means and covariance. To explore some nice result, we first focus on
mean such that g(z̃) = z̃. By introducing probability measure, we
have two equivalent formulations

sup EP
[
U(a(z̃)>x+ b(z̃))

]
s.t. EP [z̃] = σ

P [z̃ ∈ Z] = 1
P ∈ P0(RIz ), z̃ ∼ P

⇔

sup
∫
Z U(a(z)>x+ b(z))dµ(z)

s.t.
∫
Z zdµ(z) = σ∫
Z dµ(z) = 1

µ ∈M+(RIz )

Construct the dual with weak duality

Z1 = sup EP
[
U(a(z̃)>x+ b(z̃))

]
s.t. EP [z̃] = σ

P [z̃ ∈ Z] = 1
P ∈ P0(RIz ), z̃ ∼ P

Z2 = inf α+ β>σ
s.t. α+ β>z ≥ U(a(z)>x+ b(z)) ∀z ∈ Z

In order to achieve strong duality, we use the robust optimization
duality from previous section. Consider the case of convex piecewise
affine utility function, we have

Z2 = inf α+ β>σ
s.t. α+ β>z ≥ g`(a(z)>x+ b(z)) + h` ∀z ∈ Z, ` ∈ [L]

Recall: Primal Worst equals Dual Best

Z3 = sup
∑
`∈[L]

(
g`(a(z`)

>x+ b(z`)) + h`
)
p`

s.t.
∑
`∈[L]

p` = 1∑
`∈[L]

z`p` = σ

p > 0
z` ∈ Z ∀`
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Remark. We need the assumption that σ in the interior of Z to guar-
antee p > 0, and there exists a sequence of solutions pk, zk1 , . . . ,z

k
L,

for k > 0 that converge to the objective value Z2, with Pk
[
z̃ = zk`

]
=

pk` ∀` ∈ [L]. Then we are able to prove the strong duality:

Z1 ≤ Z2

= lim
k→∞

∑
`∈[L]

(
g`(a(zk` )>x+ b(zk` )) + h`

)
pk`

≤ lim
k→∞

∑
`∈[L]

U
(
a(zk` )>x+ b(zk` )

)
pk`

= lim
k→∞

EPk

[
U
(
a(z̃)>x+ b(z̃)

)]
≤ sup

P∈F
EP
[
U
(
a(z̃)>x+ b(z̃)

)]
= Z1.

• In many cases that the mean is not known but ambiguous with some
support S, we can still derive the dual by switching sup and inf :

sup EP
[
U(a(z̃)>x+ b(z̃))

]
s.t. EP [z̃] = σ

P [z̃ ∈ Z] = 1
σ ∈ S
P ∈ P0(RIz ), z̃ ∼ P

⇔
inf sup

σ∈S

{
α+ β>σ

}
s.t. α+ β>z ≥ U(a(z)>x+ b(z)) ∀z ∈ Z

Then it becomes a regular robust optimization problem.

• Consider more general moments beyond mean, we can introduce ax-
illary random variables:

F =

P ∈ P0(RIz × RIu)

∣∣∣∣∣∣∣∣
(z̃, ũ) ∼ P
EP [ũ] = σ
P
[
(z̃, ũ) ∈ Z̄

]
= 1

for some σ ∈ S


where

Z̄ =
{

(z̃, ũ) ∈ Z × RIu | u = g(z)
}

It can be a issue because Z̄ may not be a polyhedral or convex set.
Polyderal moments can be used to approximate general moments, but
may need exponential numbers so may not be practical. Examples
like convex piece-wise affine

gi(z) = max
k∈[K]

{
cki
>
z + dki

}
∀i ∈ [Iu]

or even representation via linear optimization

gi(z) = min
{
c>i v |Div +Eiz ≥ fi

}
∀i ∈ [Iu]
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• For convex generalized moments EP [g(z̃)] ≤ σ. its lifted ambiguity
set will have corresponding support Z̄ =

{
(z̃, ũ) ∈ Z × RIu | u ≥ g(z)

}
.

Fortunately, we can absorb lifted random variable ũ within z̃ with
adjusted support Z and S. Hence, the ambiguity set can be gener-
alized to the case of ambiguous mean.

6. Uncertain locations and scenarios with ambiguous probabilities and moments(Event-
wise Ambiguity)

• Ambiguity set

F =

P ∈ P0(RIz × [S])

∣∣∣∣∣∣∣∣∣∣
(z̃, s̃) ∼ P
EP [z̃|s̃ ∈ Ek] = σk ∀k ∈ [K]
P [z̃ ∈ Zs|s̃ = s] = 1 ∀s ∈ [S]
P [s̃ = s] = ps ∀s ∈ [S]
for some p ∈ P,σk ∈ Qk ∀k ∈ [K]


• In order to derive tractable reformulation, we assume Zs, s ∈ [S],
Qk, k ∈ [K], P are polyhedra and P ⊆ {p > 0}. We first focus on
fixed p,σk and then optimize over them. The formulation

sup EP
[
U(a(z̃)>x+ b(z̃))

]
s.t. EP [z̃|s̃ ∈ Ek] = σk ∀k ∈ [K]

P [z̃ ∈ Zs|s̃ = s] = 1 ∀s ∈ [S]
P [s̃ = s] = ps
P ∈ P0(RIz ), z̃ ∼ P

m

sup
∑
s∈[S]

EPs

[
U(a(z̃)>x+ b(z̃))

]
ps

s.t.
∑
s∈Ek

EPs
[z̃] ps = qkσk ∀k ∈ [K]

Ps [z̃ ∈ Zs] = 1 ∀s ∈ [S]
Ps ∈ P0(RIz ), z̃ ∼ Ps ∀s ∈ [S]

where qk =
∑
s∈Ek ps. Then we can derive its dual

inf
∑
s∈[S]

psαs +
∑
k∈[K]

qkβ
>
k σk

s.t. αs +
∑
k∈Ks

β>k z ≥ U(a(z)>x+ b(z)) ∀z ∈ Zs, s ∈ [S]

where Ks = {k ∈ [K] | s ∈ Ek}.

Several extensions are developed to characterize practical issues:

• Mixture distribution: all the moments constraints are specific to each
scenario
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• Covariates as scenarios: using covariate information via regression

• K-means: partition the support set into clusters such that each set of
cluster can be represented as polyhedral

Moreover, we’d like to highlight the Wasserstein ambiguity set. In the original
definition, Wasserstein metric describes the cost of an optimal mass transporta-
tion plan:

dW (P,P†) , inf EP
[
ρ(ũ, ũ†)

]
s.t. (ũ, ũ†) ∼ Q

ΠũQ = P
Πũ†Q = P†

with its corresponding ambiguity set

GW (θ) =

{
P ∈ P0(U)

∣∣∣∣ ũ ∼ P
dW (P,P†) ≤ θ

}
P†
[
ũ† = ûs

]
= 1/S, ∀s ∈ [S]

which can be reformulated as

FW (θ) =

P ∈ P0

(
RIu × [S]

) ∣∣∣∣∣∣∣∣
(ũ, s̃) ∼ P
EP [ρ(u, ûs̃)] ≤ θ
P [ũ ∈ U | s̃ = s] = 1 ∀s ∈ [S]
P [s̃ = s] = 1

S ∀s ∈ [S]


because of

GW (θ) = ΠũFW (θ)

Finally, we can also characterize in the format of an event-wise ambiguity set

FW (θ) =

P ∈ P0

(
RIu+1 × [S]

) ∣∣∣∣∣∣∣∣
((ũ, ṽ), s̃) ∼ P
EP [ṽ | s̃ ∈ [S]] ≤ θ
P [(ũ, ṽ) ∈ Zs | s̃ = s] = 1 ∀s ∈ [S]
P [s̃ = s] = 1

S ∀s ∈ [S]

 ,

where
Zs = {(u, v) | u ∈ U , v ≥ ρ(u, ûs)}, s ∈ [S]

5 Risk Measures

In many cases, utility function is not a practical decision rule. Instead, people
care about the minimal amount of cash which has to be added to a risky returns
to make it acceptable, named as risk measure:

µ[r̃] = inf {m ∈ R | r̃ +m ∈ A}

where A is an acceptance set of returns.

A functional µ : V 7→ R is a (monetary) risk measure if and only if it satisfies:
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• Monotonicity:
For all r̃, s̃ ∈ V such that r̃ ≥ s̃, then

µ[r̃] ≤ µ[s̃].

Note that r̃ ≥ s̃ here means state-wise dominance.

• Translation Invariance:
For all c ∈ R, µ[r̃ + c] = µ[r̃]− c.

For instance, certainty equivalent with convex utility satisfies the conditions.

5.1 Value at Risk(VaR)

We define Value-at-Risk(VaR) as

VaRε[r̃] , inf {m ∈ R | P [r̃ +m ≥ 0] ≥ 1− ε}

with following properties

• It can be interpreted as the smallest capital requirement to make proba-
bility of augmented position high enough.

• It does not necessarily favor diversification.

• It is measured in three variables: the amount of potential loss, the prob-
ability of that amount of loss and the time frame.

If VaR is non-positive, it’s equivalent to chance constraint.

VaRε[a(z̃)′x+ b(z̃)] ≤ 0
m

P [a(z̃)′x+ b(z̃) ≥ 0] ≥ 1− ε

For this to be true, we need P [r̃ + v ≥ 0] with respect to v non-decreasing and
right-continuous.

5.2 Conditional Value at Risk(CVaR)

We know VaR is generally difficult to solve because of its property, so we derive
Conditional Value at Risk(CVaR), which takes an average of the losses exceeding
the VaR value.

CVaR∗ε [r̃] , EP [−r̃ | −r̃ ≥ VaRε(r̃)] ≥ VaRε(r̃)
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We first consider the discrete returns rt, t ∈ [T ]. Then if εT is an integer, we
have

CVaR∗ε [r̃] =
1

εT
max

S : ,S⊆[T ],|S|=εT

∑
t∈S
−rt

=
1

εT
max

z∈{0,1}T ,z′1=εT

∑
t∈[T ]

−rtzt

=
1

εT
max

z∈[0,1],z′1=εT

∑
t∈[T ]

−rtzt

Taking the dual of that, we have

CVaRε[r̃] = min s+ 1
εT 1′p

s.t. s1 + p ≥ −r
p ≥ 0

or equivalently

CVaRε[r̃] = inf
s

s+
1

ε

1

T

∑
t∈[T ]

(−rt − s)+


where (x)+ = max{0, x}

From this expression, we can have a more common definition for CVaR in opti-
mization:

CVaRε[r̃] , inf
v

{
v +

1

ε
EP
[
(−r̃ − v)+

]}
It does not require εT as an integer and also works for continuous distribution
of returns, so it’s widely applied in robust optimization community.

Moreover, it provides the tightest upper bound for VaR:

CVaRε[r̃] = infv {v | CVaRε[r̃] ≤ v }
= infv,s

{
v | (s− v) + 1

εEP [(−r̃ − s)+] ≤ 0
}

= infv,s
{
v | s+ 1

εEP [(−r̃ − v − s))+)] ≤ 0
}

= infv,t≥0

{
v | 1

εEP [(−r̃ − v + t))+)] ≤ t
}

= infv,t>0 {v | EP [((−r̃ − v)/t+ 1))+)] ≤ ε }
≥ infv {v | P [r̃ + v ≤ 0] ≥ 1− ε }
= VaRε[r̃]

The inequality comes from Markov inequality.

5.3 Convex Risk Measure

Recall that we mention diversification preference before, which is an important
criteria. Here, we introduce convex risk measure as an equivalent interpretation.
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Compared with normal risk measure, we require convexity that for all r̃, s̃ ∈ V,
then

µ(λr̃ + (1− λ)s̃) ≤ λµ(r̃) + (1− λ)µ(s̃).

We provide several examples:

• CVaR: CVaRε[r̃] , infv
{
v + 1

εEP [(−r̃ − v)+]
}

• Worst-case CVaR: F-CVaRε[r̃] , infv
{
v + 1

ε supP∈F EP [(−r̃ − v)+]
}

• Optimized Certainty Equivalent: µOCE[r̃] = infv∈R {v + supP∈F EP [U(−r̃ − v)]}

• Shortfall Risk Measure: µSR[r̃] = infv∈R {v | supP∈F EP [U(−r̃ − v)] ≤ 0}

5.4 Risk Measure under Ambiguity

From the view of robust optimization, we care about CVaR/VaR under am-
biguity. For ease of exposition, risk measures are defined on losses instead of
returns.

Theorem 5.1.
F-VaRε[c

′z̃] = F-CVaRε[c
′z̃]

for moment ambiguity set,

F =

P ∈ P0(RIz )

∣∣∣∣∣∣
z̃ ∼ P
EP [z̃] = σ
P [z̃ ∈ Z] = 1


where

F-VaRε[s̃] , inf

{
v ∈ R | inf

P∈F
P [s̃ ≤ v] ≥ 1− ε

}
F-CVaRε[s̃] , inf

v

{
v +

1

ε
sup
P∈F

EP
[
(s̃− v)+

]}
Remark. The theorem does not hold for non linear disutility or ambiguity set
with multiple scenarios.

Proof. We first change the representation such that

F-VaRε[c
′z̃] = inf

{
v ∈ R | sup

P∈F
P [c′z̃ > v] ≤ ε

}
Then by the knowledge of last section, we have

inf
P∈F

P [c′z̃ > v] = inf α+ β′σ

s.t. α+ β′z ≥ 1 ∀z ∈ Z, c′z > v
α+ β′z ≥ 0 ∀z ∈ Z

22



Next we reformulate the last constraint by infimum convolution such that

F-VaRε[c
′z̃] = inf v

s.t. α+ β′σ ≤ ε
α+ β′z ≥ 0 ∀z ∈ Z
α+ β′z ≥ 1 ∀z ∈ Z, c′z > v

= inf v
s.t. α+ β′σ ≤ ε

α+ β′z ≥ 0 ∀z ∈ Z
α+ inf

z∈Z
{(β − β2)′z}+ inf

z:c′z>v
{β′2z} ≥ 1

= inf v
s.t. α+ β′σ ≤ ε

α+ β′z ≥ 0 ∀z ∈ Z
α+ inf

z∈Z
{(β − cp)′z}+ vp ≥ 1

p > 0
= inf v

s.t. α+ β′σ ≤ ε
α+ β′z ≥ 0 ∀z ∈ Z
α+ β′z ≥ 1 + c′zp− vp ∀z ∈ Z
p > 0

= inf v
s.t. α+ β′σ ≤ ε/p

α+ β′z ≥ 0 ∀z ∈ Z
α+ β′z ≥ 1/p+ c′z − v ∀z ∈ Z
p > 0

The last reformulation is derived from perspective function over p.

Finally by replacing 1
p = r and v = v + r, we reach

F-VaRε[c
′z̃] = inf v + r

s.t. 1
ε (α+ β′σ) ≤ r
α+ β′z ≥ 0 ∀z ∈ Z
α+ β′z ≥ c′z − v ∀z ∈ Z
r ≥ 0

= inf v + 1
ε (α+ β′σ)

s.t. α+ β′z ≥ 0 ∀z ∈ Z
α+ β′z ≥ c′z − v ∀z ∈ Z

= inf
v∈R

{
v + 1

ε sup
P∈F

EP [(c′z̃ − v)+]

}

5.5 Satisficing Measures

Instead of setting parameter ε for VaR and CVaR, we may use target as an
alternative risk measure. For instance, P[r̃ ≥ 0] denotes the probability of target
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attainment, which unfortunately does not favour diversification preference and
can not be optimized in computation. Therefore, we need to introduce satisficing
measure as a more rigorous and practical notion.

A functional ρ : V 7→ [−∞,∞] is a satsificing measure if and only if

• Target satisficing: r̃ ≥ 0⇒ ρ[r̃] =∞

• Target infeasibility: r̃ < 0⇒ ρ[r̃] = −∞

• Monotonicity: r̃ ≥ ṽ ⇒ ρ[r̃] ≥ ρ[ṽ]

• Upper-semicontinuous: {r̃ ∈ V | ρ[r̃] ≥ α} is closed for all α.

Theorem 5.2. A functional ρ : V 7→ [−∞,∞] is a satsificing measure if and
only if

ρ[r̃] = sup{α ∈ R | µα[r̃] ≤ 0}.

for some risk measure µα : V 7→ [−∞,∞] satisfiying

• Monotonicity: r̃ ≥ ṽ ⇒ µα[r̃] ≤ µα[ṽ]

• Translation invariance: µα[r̃ + a] = µα[r̃]− a

• Nondecreasing in α ∈ R

• Normalized: µα[0] = 0

• Lower-semicontinuity: {r̃ ∈ V | µα[r̃] ≤ τ} is closed for all τ .

Remark. For given ρ, µα[r̃] = inf{τ ∈ R | ρ[r̃ + τ ] ≥ α}

To be consistent with diversification preference, we also need satisfication mea-
sure to be quasi-concave, and corresponding risk measure to be convex.

We provide several examples of QSM:

• CVaR QSM: ρ[r̃] = sup
α∈[0,1]

{α | CVaR1−α[r̃] ≤ 0}

– ρCVaR[r̃] ≤ P [r̃ ≥ 0]

– The tightest QSM for probability measure we mentioned at the be-
ginning of section

• Scale Invariant QSM: ρ[r̃] = supα,β {α ∈ [0, 1] | βEP [U(r̃/β)] ≥ βα, β ≥ 0}

– ρ[kr̃] = ρ[r̃] for all k > 0

– Concave, nondecreasing utility, U(·) with U(0) = 0 and U(r) < 0 for
all r < 0, U(∞) = 1

– ρ[r̃] ≤ P [r̃ ≥ 0]
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– Generalized CVaR QSM, obtain CVaR QSM when U(r) = min{r, 1}

• Scale Reciprocal QSM: ρ[r̃] = sup
α≥0
{α | EP [U(−αr̃)] ≤ 1}

– Convex, nondecreasing, nonnegative disutility U(·) with U(0) = 1
and U(r) > 1 for all r > 0

– ρ[kr̃] = 1
kρ[r̃] for all k > 0

– Probability Bound: for all θ > 0, by Markov inequality

P [r̃ < −θ] = P [U(−α∗r̃) > U(α∗θ)] ≤ EP [U(−α∗r̃)]
U(α∗θ)

≤ 1

U(ρ[r̃]θ)

where ρ[r̃] = α∗.

– U(·) controls the probability bounds.

In order to optimize some decision variable x over QSM, we could apply binary
search on ρ by iteratively solving small problem. Sometimes, according to QSM
structure, it can be transformed to a single convex optimization problem.

6 Stochastic Programming

The basic structure of stochastic programming is two-stage linear programming
problem in which we decide x first (Here-and-now), then wait for scenario to
realize, and finally decide y (recourse) in response to scenario.

Mathematically, we induce first stage cost

c′x s.t. Ax = b,x ≥ 0

then have second stage cost

d(s)′y s.t. T (s)x+ Y (s)y ≥ h(s),y ≥ 0

To solve stochastic programming, we rely on different underlying assumption
for recourse. First we consider the fixed recourse, which means coefficients of
recourse variables are constant.

f(x, s) = min d′y
s.t. T (s)x+ Y y = h(s)

y ≥ 0

Although the fixed recourse simplifies formulation, it’s still possibly infeasible
with given x, so we introduce complete recourse to have feasibility requirement.
For all t there exist y such that Y y = t,y ≥ 0.
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However, complete recourse is over-constrained because we only care about some
h(s) − T (s)x, instead of all t. Hence, we come up with relatively complete
recourse, which means for all x ∈ X , second stage problem would always be
feasible for all scenarios. It’s obvious that complete recourse implies relatively
complete recourse, but converse is not true.

Typically, a stochastic programming can be formulated as

Z∗ = min c′x+ EP [f(x, s̃)]
s.t. Ax = b

x ≥ 0

= min c′x+
∑
s∈[S]

psd(s)′y(s)

s.t. Ax = b
T (s)x+ Y (s)y(s) = h(s) ∀s ∈ [S]
y(s) ≥ 0 ∀s ∈ [S]
x ≥ 0

Unfortunately, when encountering large amount of scenarios with high dimen-
sion y, we have to deal with large number of decision variables and constraints
at the same time. Consider the case of relatively complete recourse, by taking
the dual second stage formulation, we remove the scenario uncertainty in the
constraints and only need to enumerate over extreme points.

f(x, s) = min d
′
y

s.t. T (s)x+ Y y = h(s)
y > 0

= max (h(s)− T (s)x)′p
s.t. Y ′p ≤ d

= maxj {(h(s)− T (s)x)′pj}

Hence we get a reformulation with fewer variables but more constraints(can be
exponential), which can be solved by Benders decomposition.

Z∗ = min c>x+
∑
s∈[S]

psf(x, s)

s.t. Ax = b
x ≥ 0

min c>x+
∑
s∈[S]

psfs

s.t. Ax = b
x ≥ 0
(h(s)− T (s)x)>pj ≤ fs ]∀j, s,

Remark. The problem of stochastic programming is computational difficult
only for two-stage, can be even harder for multi-stage.
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7 Adaptive Robust Optimization

7.1 Static Recourse Adaption

Compared with stochastic programming, we care about the worst case objective
of second stage over uncertain locations, instead of uncertain scenarios. We can
formulate the problem as

Z∗ = min c>x+ sup
z∈Z

{
d(z)>y(z)

}
s.t. Ax = b

T (z)x+ Y (z)y(z) ≥ h(z) ∀z ∈ Z
x ≥ 0
y : measurable function

which is equivalent to

Z∗ = min c>x+ t
s.t. Ax = b

d(z)>y(z) ≤ t ∀z ∈ Z
T (z)x+ Y (z)y(z) ≥ h(z) ∀z ∈ Z
x ≥ 0
y : measurable function

The structure is similar to regular robust optimization but has infinite number
of variables along with infinite number of constraints. In this case, determining
whether x ∈ X is NP-hard so approximation is needed. One possible idea is to
replace y by some function that leads to tractable formulation. However, we
still want to use regular robust optimization for approximation, which denoted
as Static Recourse Adaption.

Z∗S = min c>x+ sup
z∈Z
{d(z)>y}

s.t. Ax = b
T (z)x+ Y (z)y ≥ h(z) ∀z ∈ Z
x ≥ 0,
y ∈ RIy

Generally we have Z∗S ≥ Z∗, and in the worst case, the bound can be bad:
Z∗S =∞, so we need to explore conditions when the bound is tight. Intuitively,
if there exists worst case uncertain location, then the problem reduces to regular
robust optimization surely.

X =

{
x

∣∣∣∣ ∀z ∈ Z,∃y :
T (z)x+ Y (z)y ≥ h(z)

}
=

{
x

∣∣∣∣ ∃y :
T (z†)x+ Y (z†)y ≥ h(z†)

}
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For example, Ax+By ≥ d+ z, ‖z‖∞ ≤ 1.

We can also consider the complete recourse. In this case, if uncertainty set is
bounded, then Z∗S is finite if Z∗ is finite. Moreover, we have following result

Theorem 7.1. If there is only one recourse variable, then Z∗S = Z∗ is finite.

Z∗S = min c>x+ dy
s.t. Ax = b

T (z)x+ vy ≥ h(z) ∀z ∈ Z
x ≥ 0
y ∈ R

Proof. First, we observe that for the coefficient of recourse variable v, its entries
must share the same sign. W.L.O.G, we suppose the coefficient of recourse
variable v = 1. We also observe that d ≥ 0, otherwise the problem is unbounded.
Then we have

y(z) ≥ [h(z)− T (z)x]i,∀i ∈ [I]
= maxi[h(z)− T (z)x]i

The objective function of Z∗ becomes

Z∗ = min c′x+ d sup
z
y(z) = min c′x+ dy∗

where y∗ = maxz,i[h(z)− T (z)x]i Hence, Z∗S = Z∗.

7.2 Affine Recourse Adaption

We study the case when static recourse adaption is optimal, but with strong con-
dition, then we consider more general cases in which Affine Recourse Adaption
approximation is needed.

For simplicity, we can represent the problem in this way:

Z∗ = min c>x

s.t. x ∈ X̂
x ∈ X

where

X̂ =

{
x

∣∣∣∣ ∀z ∈ Z,∃y :
A(z)x+By ≥ h(z)

}
We can restrict y as affine function so that

Z∗A = min c>x
s.t. A(z)x+By(z) ≥ h(z) ∀z ∈ Z

x ∈ X
y ∈ L
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where

L =

{
y : RIz 7→ RJy

∣∣∣∣∣ y(z) = y0 +
∑
i∈[Iz ]

yizi

for some y0, . . . ,yIz ∈ RIy

}

The explict formulation can be derived as

• express h(z) −A(z)x as R(x)z + r(x), where R(x) and r(x) are affine
mapping of x.

• express y(z) = y0 + Y z.

Z∗A = min c>x
s.t. By0 +BY z ≥ R(x)z + r(x) ∀z ∈ Z

x ∈ X
y0,Y free variables

which is a classical robust optimization formulation and we omit the rest deriva-
tion.

In practice, ARA can be a good approximation:

Example 7.1.

X1 =

{
x

∣∣∣∣ ∃y :
z ≤ x+ y ≤ z ∀z ∈ [0, 1]

}

X2 =

{
x

∣∣∣∣ ∀z ∈ [0, 1],∃y :
z ≤ x+ y ≤ z

}
under affine recourse adaptation

X3 =

{
x

∣∣∣∣ ∃y0, y1 :
z ≤ x+ y0 + y1z ≤ z ∀z ∈ [0, 1]

}
we have

X3 = X2 = R.

However, ARA can also be a bad approximation:

Example 7.2.

X1 =

x
∣∣∣∣∣∣∣∣∣∣
∀z ∈ [−1,1],∃y :
z1 − z2 ≤ y + x
z2 − z1 ≤ y + x
y + x ≤ z1 + z2 + 2
y + x ≤ −z1 − z2 + 2


observe that

|z1 − z2| ≤ −|z1 + z2|+ 2 ∀z ∈ [−1,1]
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for all z ∈ [−1,1], we have

y = |z1 − z2| − x

it’s relative complete recourse, which means X1 = R.

However, under the ARA, we have

X2 =

x
∣∣∣∣∣∣∣∣∣∣
∃y0, y1, y2 : ∀z ∈ [−1,1]
z1 − z2 ≤ y0 + y1z1 + y2z2 + x
z2 − z1 ≤ y0 + y1z1 + y2z2 + x
y0 + y1z1 + y2z2 + x ≤ z1 + z2 + 2
y0 + y1z1 + y2z2 + x ≤ −z1 − z2 + 2


by checking the extreme point of z, we conclude X2 = ∅.

From instance above, we know although sometimes ARA is a good approxima-
tion, it can be infeasible even in relatively complete recourse. Moreover, ARA
only determines the first stage decision x and y will not be used for future
decisions.

One way to enhance ARA is to better model the uncertainty set:

Z = {z | ∃u : Cz +Du ≤ d}

which can be lifted to

Z̄ = {(z,u) | Cz +Du ≤ d}

Z = ΠzZ̄

Then we define y as affine function not only to z but also to u

Z∗EA = min c>x
s.t. A(z)x+By(z,u) ≥ h(z) ∀(z,u) ∈ Z̄

x ∈ X
y ∈ L̄

where

L̄ =

{
y : RIz × RIu 7→ RJy

∣∣∣∣∣ y(z,u) = y0 +
∑
i∈[Iz ]

yizzi +
∑
i∈[Iu]

yiuui

for some y0,y1
z . . . ,y

Iz
z ,y

1
u . . . ,y

Iu
u ∈ RIy

}

Clearly, the approximation power is enhanced so we have

Z∗S ≥ Z∗A ≥ Z∗EA ≥ Z∗
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Example 7.3. Consider the uncertainty set

Z = {z | Cz ≤ d }

Ẑ =
{

(z+, z−)
∣∣∣C(z+ − z−) ≤ d, z+, z− ≥ 0, z+′z− = 0

}
since Ẑ is not convex, we derive the convex relaxation

Z̄ =
{

(z+, z−)
∣∣C(z+ − z−) ≤ d, z+, z− ≥ 0

}
which leads to

L̄ =

y : R2Iz 7→ RJy

∣∣∣∣∣∣
y(z+, z−) = y0 +

∑
i∈[Iz ]

yi+z
+
i +

∑
i∈[Iz ]

yi−z
−
i

for some y0,y1
+ . . . ,y

Iz
+ ,y

1
− . . . ,y

Iz
− ∈ RIy


Another way to solve the issue is to remove recourse variables with hard con-
straints. Consider the constraint

X = {x | ∃y1,y2 : Ax+B1y1 +B2y2 ≥ h}

from Fourier-Motzkin Elimination, there exists U ≥ 0 such that UB1 = 0 and
X = {x | ∃y2 : UAx+UB2y2 ≥ Uh}. Then we can apply ARA on new X ,
which improves original ARA. In the other sense, we reduce more second-stage
uncertainty but induce more constraints.

The last idea is led by LP duality. Focusing on the set X̂ , we have

X̂ =

{
x

∣∣∣∣ ∀z ∈ Z,∃y :
By ≥ R(x)z + r(x)

}
,

which is equivalent to

X̂ =

{
x

∣∣∣∣sup
z∈Z

f(x, z) ≤ 0

}
,

where
f(x, z) = min 0

s.t. By ≥ R(x)z + r(x)
y free

= max (R(x)z + r(x))>w
s.t. w ∈ W

where
W =

{
w | B>w = 0,w ≥ 0

}
ending up with

X̂ =

{
x

∣∣∣∣ sup
z∈Z,w∈W

(R(x)z + r(x))>w ≤ 0

}
=

{
x

∣∣∣∣ sup
z∈Z,w∈W

(R(x)z + r(x))>w ≤ 0

}
=

{
x

∣∣∣∣ sup
w∈W

g(x,w) ≤ 0

}
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where
g(x, z) = max (R(x)z + r(x))>w

s.t. z ∈ Z.

Suppose Z = {z |Dz ≤ δ, z ≥ 0}, then

g(x, z) = min δ′λ+ r(x)′w
s.t. D′λ ≥ R(x)′w

λ ≥ 0

finally resulting

X̂ =

{
x

∣∣∣∣ sup
w∈W

g(x,w) ≤ 0

}
=

x
∣∣∣∣∣∣
∀w ∈ W,∃λ ≥ 0 :
δ>λ+ r(x)>w ≤ 0
D>λ ≥ R(x)>w

 .

It is still a classical ARA problem, but if recourse problem is non-linear, we can
only use dual ARA instead of primal ARA.

If encountering multi-period problem, we can simply divide all the periods into
first-stage and other stages, then apply ARA to determine first-stage decision
where all the other stages are concatenated.

7.3 Adaptive Distributional Robust Optimization

We can extend the result to adaptive distributional robust optimization and
let’s focus on uncertain locations with ambiguous moments.

Z∗ = min c>x+ sup
P∈F

EP
[
d>y(z̃)

]
s.t. A(z)x+By(z) ≥ h(z) ∀z ∈ Z

y : measurable function
x ∈ X

where

F =

P ∈ P0(RIz )

∣∣∣∣∣∣∣∣
z̃ ∼ P
EP [z̃] = σ
P [z̃ ∈ Z] = 1
for some σ ∈ S


Alternatively, we can formulate as

Z∗ = min c>x+ sup
P∈F

EP [f(x, z̃)]

s.t. x ∈ X

32



where
f(x, z) = min d′y

s.t. A(z)x+By ≥ h(z)
y free

= max (h(z)−A(z)x)′w
s.t. B′w = d

w ≥ 0.

f(x, z) is piece-wise affine function so that we can apply previous technique to
take the dual and finally get

Z∗ = min c>x+ sup
P∈F

EP
[
d>y(z̃)

]
s.t. A(z)x+By(z) ≥ h(z) ∀z ∈ Z

y : measurable function
x ∈ X

= min c>x+ sup
σ∈S
{α+ β′σ}

s.t. α+ β′z ≥ d>y(z) ∀z ∈ Z
A(z)x+By(z) ≥ h(z) ∀z ∈ Z
y : measurable function
x ∈ X .

Surprisingly, we reduce the problem to standard adaptive robust optimization
and thus ARA can be applied.

8 Convex Robust Optimization

8.1 Min-Max Theorem in Convex Optimization

Theorem 8.1. Let X be a compact and convex set, Y be a convex set. Given
f : X × Y 7→ R with:

−f(x, ·) upper semi-continuous and quasiconcave on Y,∀x ∈ X
−f(·,y) lower semi-continuous and quasiconvex on X ,∀y ∈ Y

then we have
min
x∈X

max
y∈Y

f(x,y) = max
y∈Y

min
x∈X

f(x,y)

Minimax saddle function is a special case with f(·,y) convex and f(x, ·) concave.
We will show that minmax of saddle function can always transformed to minmax
of biaffine function!! Results can also be extended to distributional ambiguity.

Suppose function f(x, z) (taking values in extend real line) is concave and
upper-semi-continuous in z for all x ∈ X , then for all x ∈ X , we can con-
struct the conjugate function

−f(x, z) = sup
v
{z′v − g(x,v)}
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where
g(x,v) = sup

z
{z′v + f(x, z)}

which is jointly convex on x,v.

Then we can represent the robust optimization as

inf
x∈X

sup
z∈Z

f(x, z)⇔ inf
x∈X

sup
z∈Z

inf
v
{−z′v + g(x,v)} ⇔ inf

(x,v,w)∈X̄
sup
z∈Z
{−z′v + w}

where
X̄ = {(x,v, w) | x ∈ X , g(x,v) ≤ w} .

8.2 Tractable Robust Counterpart

Let’s explore the tractability of robust counterpart in convex representation. In
order to derive solvable algorithm in polynomial time, we need to ensure the
underlying feasibility problem can be solved efficiently. Therefore, the robust
counterpart is tractable if and only if we could efficient check

• whether x is feasible in the robust counterpart

• if infeasible, isolate the scenarios that violate the robust counterpart

We first consider robust quadratic optimization, and thus we have the robust
counterpart

x′A(z)′A(z)x+ b(z)′x+ c(z) ≤ 0 ∀z ∈ W
which is equivalent to

max
z∈W

‖y + Y z‖22 + v0 + v′z ≤ 0

Unfortunately, for general uncertainty set W, the problem is intractable unless
we have single ellipsoidal uncertainty set E(r) = {z|‖z‖2 ≤ r}.

Lemma 8.2. Suppose z′A1z + 2b′1z + c1 > 0 for some z, then

z′A0z + 2b′0z + c0︸ ︷︷ ︸
q0(z)

≥ 0 ∀z : z′A1z + 2b′1z + c1︸ ︷︷ ︸
q1(z)

≥ 0

if and only if there exists τ ≥ 0 such that[
c0 b′0
b0 A0

]
− τ

[
c1 b′1
b1 A1

]
� 0

Apply S-lemma above, we have ∃τ ≥ 0[
−v0 − y′y −

(
Y ′y + 1

2v
)′

−
(
Y ′y + 1

2v
)

−Y ′Y

]
− τ

[
r2 0′

0 −IN

]
� 0
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which is equivalent to[
−v0 − τr2 − 1

2v
′

− 1
2v τIN

]
−
[
y′

Y ′

]
Im

[
y′

Y ′

]′
� 0

Apply Schur complement, we have the SDP representation Im y Y
y′ −v0 − τr2 − 1

2v
′

Y ′ − 1
2v τIN

 � 0

Similar to robust quadratic optimization, we can get tractable form for robust
SOCP without RHS uncertainty as well.

9 Entropic Methods

We have tight and tractable results for DRO problems based on scenario-wise,
moment based ambiguity sets. In practice, it’s common that z̃j are indepen-
dently distributed, so how can we deal with that in a better way?

9.1 Probability Inequality

Let’s start with univariate random variable with known mean and variance

F =
{
P | EP [ṽ] = µ,EP

[
ṽ2
]

= µ2 + σ2
}

Consider the distribution ambiguity, by one-sided Chebyshev inequality, we have
for all P ∈ F

P [ṽ > µ+ rσ] ≤ 1

1 + r2

which is a tight bound such that the robust counterpart has a closed-form rep-
resentation

sup
P∈F

P [ṽ > 0] =

{
1 µ ≥ 0

1
1+(µ/σ)2 otherwise

We also have similar result for multivariate from [2]. For all P ∈ F

F = {P | EP [z̃] = 0,EP [zz′] = Σ}

we have

sup
P∈F

P [y0 + y′z̃ > 0] =

{
1 y0 ≥ 0

1

1+(y0/
√
y′Σy)

2 otherwise
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In this way, we can represent the mean-variance chance constraint as

sup
P∈F

P [y0 + y′z̃ > 0] ≤ ε⇔ y0 +

√
1− ε
ε

√
y′Σy ≤ 0

which can be represented as standard robust optimization problem with associ-
ated uncertainty set

y0 + y′z ≤ 0 ∀z ∈ U(ε)

where

U(ε) ,

{
z|
∥∥∥Σ1/2z

∥∥∥
2
≤
√

1− ε
ε

}

We’d like to know the property of this uncertainty set. Consider the case if the
underlying distribution is normal z̃ ∼ N (0,Σ), then

y0 + Φ−1(1− ε)
√
y′Σy ≤ 0⇔ P [y0 + y′z̃ > 0] < ε

Consequently, the uncertainty set we derive before can be too conservative in
this case, especially when ε is small.

9.2 Expected Excess

It’s pretty usual to use CVaR to approximate chance constraints and we have
to deal with expected excess

sup
P∈F

EP

[(
y0 + y′z̃ − v

)+]
The tight result can be obtained by event-wise ambiguity set, but when z̃j are
independently distributed, we can strengthen the bound despite it may not be
tight.

Consider the moment generation functions gj(θ) , ln(EP [exp(θz̃j))], which can
be used to bound the expected excess as

EP

[
(y0 + y′z̃)

+
]

≤ infµ>0 µEP [exp ((y0 + y′z̃) /µ− 1)]

= infµ>0 µ exp (y0/µ− 1)
∏N
j=1 EP [exp (yj z̃j/µ)]

= infµ>0 µ exp
(
y0/µ+

∑N
j=1 gj (yj/µ)− 1

)
Unfortunately, calculating moment generation functions gj is hard so we need
approximation. Suppose z̃j has zero mean, then gj is bounded by forward
deviation and backward deviation as

gj(θ) ≤
σ2
fjθ

2

2
,∀θ > 0; gj(θ) ≤

σ2
bjθ

2

2
,∀θ < 0
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where

σf = sup
θ>0

{√
2

ln(EP [exp(θz̃)])

θ2

}
≥ σ, σb = sup

θ>0

{√
2

ln(EP [exp(−θz̃)])
θ2

}
≥ σ

the equality holds for normal distribution.

Moreover, if z̃ is bounded and distributed in [−z, z] z, z > 0, then

σf (z̃) ≤ σf (z̃) =
z + z

2

√
g

(
z − z
z + z

)
and

σb(z̃) ≤ σb(z̃) =
z + z

2

√
g

(
z − z
z

)
where

g(µ) = 2 max
s>0

φµ(s)− µs
s2

and

φµ(s) = ln

(
es + e−s

2
+
es − e−s

2
µ

)
the bound is tight, which can be achieved by a two-point distribution.

Therefore, we can bound the expected excess as

EP

[
(y0 + y′z̃)

+
]

≤ inf
µ>0

µ exp

y0/µ+

N∑
j=1

gj (yj/µ)− 1


≤ inf
µ>0

µ exp

(
y0/µ+

‖u‖22
2µ2

− 1

)
= π (y0,y)

where
uj = max {yjpj ,−yjqj}
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Finally, we get the approximation of CVaR as

inf
v

{
v +

1

ε
sup
P∈F

EP
[
(y0 + y′z̃ − v)+

]}
≤min

v

(
v +

π (y0 − v,y)

ε

)
=y0 + min

v

(
v +

π(−v,y)

ε

)

=y0 + min
v,µ

v +

µ
e exp

(
−v
µ +

‖u‖22
2µ2

)
ε


=y0 + min

µ

(
‖u‖22
2µ2

− µ ln ε

)
=y0 +

√
−2 ln ε‖u‖2

Recall the case of normal distribution, we can construct the uncertainty set by
letting

F =
{
P | z̃ = Σ1/2ζ̃,EP [ζ] = 0, ζi independent, σfi, σbi ≤ 1

}
and thus

y0 +
√
−2 ln(ε)

√
y′Σy ≤ 0⇒ P [y0 + y′z̃ > 0] < ε

which has less conservative ambiguity.

9.3 Adaptive Distributional Robust Optimization

We consider the application in adaptive distributional robust optimization

min c′x+ supP∈F EP [d′y(z̃)]
s.t. Ax = b

T (z̃)x+ Y y(z̃) = h(z̃)
x ≥ 0
yi(z̃) ≥ 0,∀i

We focus on the recourse Y , and define

dj = min d′y
s.t. Y y = 0

yj = 1
y ≥ 0

for all j ∈ J if the problem is feasible(which is for sure under complete recourse).
Then dj ≥ 0 and finite with optimum solutions yj .
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Given the knowledge above, we can introduce deflected linear decision rule as

y(z̃) = y0 +
∑
j∈[Iz ]

yj z̃j +
∑
j∈J

yj
(
y0
j + y′j z̃

)−
We need to check the feasibility of the problem:

first, since Y yj = 0, we only need following condition for each uncertainty
variable

Tjx+ Y yj = hj ∀j = 0, . . . , N
⇓

T (z̃)x+ Y y(z̃) = h(z̃)

second, we have to consider those i /∈ J

y0
i +

∑
j∈[Iz ]

yji zj ≥ 0 ∀z ∈ Z

⇓
yi(z̃) ≥ 0

third, the objective function is also changed

sup
P∈F

EP [d′y(z̃)] ≤ d′y0 +
∑
i∈F

di sup
P∈F

EP

[(
−y0

i − y′iz̃
)+]

finally we can use entropic expected excess for reformulation

ZDLDR = min c′x+ d′y0 +
∑
j∈J

djπ
(
−y0

j ,−yj
)

s.t. Ax = b
Tix+ Y yi = hi ∀i ∈ [Iz] ∪ {0}
y0
i +

∑N
j=1 y

j
i zj ≥ 0 ∀z ∈ Z,∀i /∈ J

x ≥ 0

10 Robust Combinatorial Optimization
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