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1 Introduction

• Structural Decision

• Pricing Decision

• Quantity Allocation Decision

2 Single-Product Price Optimization

2.1 Basic Pricing Model

Consider the simplest case when we want to sell a product with the unit cost c, and we have to set a price
p, generating the expected demand d(p). If there is no capacity limit, we can build a model to maximize the
profit

maxp f(p) = pd(p)− cd(p)

The demand function d(p) is characterized as market share times customer choice probability

d(p) = NP(W ≥ p)

In order to well analyze the problem, we need some assumptions on demand functions:

• d(p) ≥ 0,∀p

• d(p) is strictly decreasing in p and has an inverse function p(d)

• d(p) is differentiable with respect to p

• limp→∞ d(p) = 0

Several examples of demand functions are as follows:

• Linear: d(p) = (a− bp)+, which is concave in feasible region

• Exponential: d(p) = exp(a− bp), which is not concave

• Logit: d(p) = N exp(a−bp)
1+exp(a−bp) , which is quasi-concave
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Remark. If we consider the revenue function over d, they are all concave.

To solve the problem, we look at the first-order necessary condition such that optimal p∗ satisfy

p∗d′ (p∗) + d (p∗) = cd′ (p∗)

which means marginal revenue equals the marginal cost.

In order to better interpret this formula, we introduce the notion of Price Elasticity of Demand, which is
defined as

ε(p) =
d′(p)p

d(p)
=

∆d

∆p

p

d
=

∆d/d

∆p/p

The PED measures how sensitive the demand is to the change of price in percentage, and even for the same
product, different groups of customers may have very different PED. Given this concept, we can re-write the
optimality condition as

ε (p∗) =
d′ (p∗) p∗

d (p∗)
= − p∗

p∗ − c
When the cost is negligible, the optimal price is found at PED equals −1. Normally, we assume PED to be
decreasing so as to ensure a unique optimal solution.

Remark. In practice, the effect of cost is less important compared with demand function such as airline and
hotel.

2.2 Price Discrimination

Since customers have different WTP’s, one way to improve the revenue is to segment the consumers into
different types with different prices, which is called price discrimination.

Figure 1: The power of price discrimination

If illustrating by demand function, the introduction of price discrimination helps extract higher proportion of
potential maximal revenue, instead of one single rectangle. Ideally, if customers are perfectly discriminated,
the maximal revenue can be achieved, which is called first degree price discrimination, but hard to implement.
In practice, people usually segment customers into discrete groups by some criteria such as regions, purchase
time, purchase channel, purchase effort or even age.
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Mathematically, the pricing problem with inventory constraints can be easily formulated:

maximize

n∑
i=1

(pi − c) di (pi)

s.t.

n∑
i=1

di (pi) ≤ N

If we write d as decision variables, it becomes a concave objective function with linear constraint.

In reality, unfortunately, people have to deal with cannibalization that high-value customers may reach
out for low price. Specifically, we may either impose the fence to guarantee segmentation or incorporate
possibility in modeling. Moreover, it becomes popular to let consumers ”self-select” into appropriate groups,
such as using coupons, product versioning/damaging, and especially opaque selling.

In order to analyze the effect of opaque selling, let us consider a simple model with following settings:

• A monopoly sells two types of products A and B

• Each consumer’s valuation for product A and B are vA and vB , respectively

• vA is uniformly distributed in [0, 1] and vB = 1− vA

• The utility of getting a product is the valuation minus the price

• Each consumer will choose a product with highest utility given it is positive; otherwise choose not to
buy

• The monopoly wants to maximize the total expected revenue

Traditionally, the monopoly can optimize its expected revenue as

pB min

{
1− pB + pA

2
, 1− pB

}
+ pA

(
1−max

{
1− pB + pA

2
, pA

})
with optimal price: pA = pB = 1/2 and optimal expected revenue 1/2.

Now in the opaque-only selling, assume it sells an opaque product with price pO with probability α the
product is A; otherwise the product is B, and the condition for consumer purchasing the opaque product is

αvA + (1− α) (1− vA)− pO ≥ 0

In this way, the optimal price is pO = 1/2 and optimal expected revenue is 1/2, which are the same as before.

However, magic happens when consider opaque product together with original two products. In particular,
the price of products A and B can be raised to make more revenue. Intuitively, the consumers are voluntarily
segmented into three groups: {preferring A, preferring B, OK with both}.

Recall Fig.1, it seems that company makes more revenues by squeezing out consumers’ welfare(surplus),
which actually may not always be the case. If people greedily maximize the revenue then consumers’ welfare
will be squeeze out, but if people extract more revenue while considering consumers’ welfare, it can be a
win-win strategy, which are shown in Fig.2 and Fig.3

Intuitively, the key idea is to increase the sales, which is beneficial for company to get more revenue as well
as for consumers to have more chances to buy.
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Figure 2: Figure 3:

2.3 Dynamic Pricing

Beyond single-period pricing, it’s straightforward to extend to pricing under some finite time horizon, which
is referred as dynamic pricing. Under this circumstance, the customer behavior along the time is essential.
They may be myopic that just respond to current price or be strategic that refer to other factors including
past prices or future information, or even other consumers’ choices. Moreover, the market can be quite
complicated such as competition level. To start with, we first consider the simplest case:

• There is a finite selling horizon T

• There is a fixed inventory x, which cannot be replenished during the selling season

• There is no value for the inventory after time T

• The seller needs to post a price p at each moment in the selling season

• The customers purchase according to a Poisson process with instantaneous arrival rate λ(p)

• The objective is to maximize the expected total revenue in T

Then we can formulate the problem as dynamic programming:

Vt(x) = max
p
{λ(p)∆t (p+ Vt−∆t(x− 1)) + (1− λ(p)∆t)Vt−∆t(x)}

which is equivalent to
∂Vt(x)

∂t
= max

p
{λ(p) (p+ Vt(x− 1)− Vt(x))}

Normally, this PDE is hard to solve but when the demand function is exponential with

λ(p) = ae−p

We can solve it in closed-form as

Vt(x) = log
(∑x

i=0

(
at
e

)i 1
i!

)
p∗(t, x) = Vt(x)− Vt(x− 1) + 1

For general cases, we may refer to discretization such that ∆t is fixed and one should maximize

λ(p) (p+ Vt−1(x− 1)− Vt−1(x))
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Solving DP is hard so we may consider a deterministic case that the demand will be a fluid of rate λ(p), so
as for the inverse function p(λ). Then the problem can be written as

maximize
∫ T

0
p (λt)λtdt

subject to
∫ T

0
λtdt ≤ C

The optimal solution to this deterministic problem is a constant pricing policy, along with optimal value
V Dt (x), which is also an upper bound of DP value function. A natural question is how good is fixed price
policy in original stochastic setting. It has been proved that this policy is asymptotically optimal as

V FPt (x)

V Dt (x)
≥ 1− 1

2
√

min {x, λ∗t}

where V FPt (x) = p∗E
[
min

{
x,Nλ(p∗)t

}]
. Intuitively, fixed price policy captures the first-order effect of the

problem while dynamic pricing adjusts to the demand fluctuation which captures the second-order effect.

3 Single-Resource Capacity Control

Beyond price and demand, revenue management usually has to deal with another important concern: limited
resource, or specially capacity control. The most classical problem in this context arises from seat control in
airline operations. Normally, there are several fare classes for the same flight to target on different types of
customers. For example, leisure customers have low WTP and business customers have high WTP. In this
chapter, we will study the control policy for revenue maximization with limited seats and given prices.

3.1 Static Model

The basic static model has following setting

• There are D1 business passengers who afford p1 dollars

• There are D2 leisure passengers who afford p2 < p1 dollars

• Assume that leisure passengers arrive prior to business passengers

We need to decide a capacity limit K with p2 for a certain flight with C seats. Clearly, there is a trade-off
in choosing K and the problem is not trivial when D1 and D2 are random in practice. We can formulate
the problem as

r(K) = p2 · Emin (D2,K) + p1 · Emin (D1, C −min (D2,K))

If demands of different passengers are independent, we may denote y = C −K as the number of seats that
are reserved for the high-value passengers, and derive the optimality condition

P (D1 ≥ y) =
p2

p1

Intuitively, it reaches some equilibrium that when you accept a low fare passenger, the immediate reward
is p2, but the opportunity cost is p1P (D1 ≥ y). This model is known as Littlewood’s model, which can
be extended to problem with n classes easily. Now, we have to decide a sequence of protection levels
y1, y2, ..., yn−1 for n− 1 classes. Clearly, we can use recursion to analyze the solution. Since the solutions of
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last two periods are the same as above, we can directly investigate stage 3 when we have to reserve seats for
class 1 and 2. The value function can be represented as

V2(x) = p2Emin (D2, x− y∗1) + p1Emin (D1,max (x−D2, y
∗
1))

Follow the idea before, the derivative of value function(opportunity cost) should equal to p3 in optimal
condition. Thus, we get

P (D1 ≥ y∗1 , D1 +D2 ≥ y∗2) =
p3

p1

and in general
pj+1

p1
= P

(
D1 ≥ y∗1 , D1 +D2 ≥ y∗2 , . . . , D1 + · · ·+Dj ≥ y∗j

)
Although this nice optimal policy can be computed efficiently, most RM systems in practice use some
heuristics, such as EMSR-a and EMSR-b. Suppose we are in the stage 3, the idea of EMSR-a is to reserve
space for the remaining two classes separately using Littlewood’s rule. In particular, it reserves y2 seats for
class 2 with P (D2 ≥ y2) = p3/p2 and reserves y1 seats for class 1 with P (D1 ≥ y1) = p3/p1. Then, the
idea goes for all previous stages to get ’optimal’ protection level. Unfortunately, it’s only powerful for a
short while but less accurate in the long term because it ignores the pooling effect of different classes when
dealing with uncertainty. Moreover, EMSR-b aims to reserve seats for remaining classes as a group with a
weighted-average price

p2 =
p1E [D1] + p2E [D2]

E [D1] + E [D2]

and choose y∗2 such that P (S2 ≥ y∗2) = p3/p2. Numerically. On top of that, instead of assuming some
distribution structure, we can use historical samples more directly and adaptively. Define the event

Bj (y∗, D) = I
(
D1 ≥ y∗1 , D1 +D2 ≥ y∗2 , . . . , D1 + · · ·+Dj ≥ y∗j

)
which expected to occur at frequency pj+1/p1. Therefore, during the process of sample collection, if we
observe one sample that the event is true, we want to adjust y∗j upwards, otherwise we adjust downwards.
Finally, we will get an adaptive algorithm

yk+1
j = ykj − γk

(
pj+1

p1
−Bj(y, D)

)
∀j

If learning rate is properly chosen, it will converge to optimal solution.

3.2 Dynamic Model

In the previous model, we assumed that the customers arrive in the order of their WTP. However, in practice,
some high fare passengers may come earlier and some low fare passengers may come later. In this section,
we assume each customer comes and requests a certain class of fares, and you need to decide whether to
accept them or not (without knowing the future arrival customers).

The dynamic model kicks in to solve the problem with following settings

• There are T periods in total indexed forward (the first period is 1 and the last period is T )

• There are C inventory at the beginning

• Customers belong to n class, with p1 > p2 > · · · > pn and requests to buy a ticket at price pi
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• Each period is small enough so that there is at most one arrival in each period

we need to decide which fare class to accept at period t with x inventory remaining. Let u ∈ {0, 1}n to be
the decision variable at period t, then we have the DP formula

Vt(x) = max
u

{
n∑
i=1

λi (piui + Vt+1 (x− ui)) +

(
1−

n∑
i=1

λi

)
Vt+1(x)

}

with following optimal bid-price control policy

ui =

{
1 pi ≥ ∆Vt+1(x)
0 pi < ∆Vt+1(x)

where ∆Vt+1(x) = Vt+1(x)− Vt+1(x− 1) represents opportunity cost. It’s intuitive to get two properties:

∆Vt(x+ 1) ≤ ∆Vt(x) ∆Vt+1(x) ≤ ∆Vt(x)

Let’s consider some extensions with more practical concern. First, assume for each low fare passenger, if low
fare ticker are not available, there is some probability q that he will purchase high fare ticket, which referred
as buy-up effect. We can easily adjust Littlewood’s rule as

p2 = (1− q)p1P (D1 > x) + qp1

however, this closed-form expression only works for two classes.

In fact, the issue above is just a special case incorporating customer choice. Generally, for each customer,
he may have more complex choice behavior given many fare classes available instead of picking the cheapest
one. Mathematically, we do not distinguish different arrival rates as λi but an aggregated arrival rate λ
instead. At each period t, a subset of classes St is available such that the purchase probability of class j is
Pj(St), which satisfies the property of choice model. Specifically, if it is consistent with MNL model

Pi(S) =
exp (ui)

1 +
∑
j∈S exp (uj)

then the only efficient sets are revenue ordered set such that if you offer class i, you should offer all classes
that are higher than i and as inventory decreases, one should gradually close the low fare classes.

The point we need to attention is that the gap between standard Littlewood’s model and choice-based model
can be huge, which is known as Spiral-Down effect. In particular, the demand of class 1 tickets becomes
endogenous that depends on the control policy. In this case, even though the demand distribution normally
will converge and is consistent with resulting observation, the revenue may be severely hurt because the
empirical demand is interpreted in a wrong way, so as the control policy. Therefore, it’s really critical to
consider the effect of customer choice behavior for capacity control.

Last but not least, overbooking model is becoming popular in practice. A simple model to analyze has
following settings:

• The capacity is C and there is only one fare class p

• Each denied boarding has a cost h

• Each passenger has probability q to show up
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• Therefore, the actual arrival will be a binomial random variable B(n, q), where n is the total number
of tickets sold

We need to decide the actual number of available seats to sell to maximize the expected revenue and possibly
satisfy some service-level constraints. The expected revenue of having y seats is

V (y) = py − hE
[
(B(y, q)− C)+

]
which is concave in y, and the optimal booking limit y∗ is the largest value of y satisfying

V (x)− V (x− 1) = hqP (B(x− 1, q) ≥ C) ≤ p

It automatically infers Type I service level guarantee such that

P (B(x− 1, q) ≥ C) ≤ p/hq

In reality, one may more care about what fraction of passengers will be bumped, which is called Type II
service level guarantee. It can be computed as

s2(x) =
E[(B(x)− C)]+

E[Z(x)]

and one can easily make it less than a certain level.

4 Network Revenue Management

In many real-world problems, capacity control has to deal with multiple resources together such as network
revenue management, which is very popular especially in airline industry. We consider a standard network
capacity control problem with m resources and n products, such that we can view the resources as the flight
legs, and products as itineraries with some given prices. We analyze the model with following setting:

• each product uses at most one unit of each resource, but may use multiple types

• prices pj ’s are predetermined

• we could have multiple products with same resource pattern but different pj

• the selling horizon is T and at each period t, at most one request is made by product j with probability
qjt

We need to decide whether to accept the request of product j at each period under resource constraint so
that the total expected revenue during the T periods is maximized. Again, we can use DP to formulate
this problem such that Vt(x) denotes the maximum expected revenue to go at period t and with remaining
inventory x. We have the following Bellman equation

Vt(x) = max
u∈U(x)

 n∑
j=1

qit (pjuj + Vt+1 (x−Ajuj)) +

1−
n∑
j=1

qjt

Vt+1(x)


and its feasible region

U(x) = {u ∈ {0, 1}n : ajuj ≤ x,∀j}
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Similar to single resource case, we can also result in the optimal decision in the manner of bid-price

u∗j (t,x) =

{
1 if pj ≥ Vt+1(x)− Vt+1 (x− aj) and Ajuj ≤ x
0 otherwise

However, the number of states with multiple resources will be exponential and thus the DP is hard to solve
directly, but can be approximated in some way. Recall the dynamic pricing model with DP formulation, we
use deterministic model to find an upper bound. In fact, this technique also fits into network capacity control
problem. We can solve a deterministic linear programming with demand represented by its expectation

V LPt (x) = max
∑n
j=1 pjyj

subject to
∑n
j=1 ajyj ≤ x

0 ≤ yj ≤ djt

where djt =
∑T
τ=t qjτ

Clearly, the solution of DLP provides an upper bound of the optimal revenue, which can be utilized to
construct some control policies for the original problem.

• Partition allocation rule: set as limit the optimal solution y∗ of DLP; suffer from demand fluctuation

• Bid price rule: set as marginal value of resource the dual price of each constraint, and by complementary
slackness, we have decision rule pj ≥ aTj p∗; may update the dual price frequently but no guarantee to
increase the expected revenue

• Certainty equivalent control: approximate the value function in the optimal decision rule with DLP
pj ≥ V LPt+1 (x)− V LPt+1 (x− aj)

It has been shown that partition allocation rule and bid price rule are asymptotically optimal.

Another stream of technique tries to improve DLP directly, such as randomized linear programming. Instead
of using expected demand to go, RLP keeps the demand as a random variable. We can take the expectation
of this RLP objective value E [Ht(x, D)] by solving LP for each realization. Intuitively, this approximation
should be better than DLP if we are able to sample some demand efficiently. Although partition allocation
rule is not suitable here, bid price rule is still applicable because

∇xV RLPt (x) = ∇xE [Ht(x, D)]

Interchange the derivative and expectation, we can calculate the bid price as the average of the dual prices.

Last but not least, the common technique in solving DP is ADP. First we write the equivalent LP as

min{vt,x} v0,C

s.t. vt,x ≥ vt+1,x +
∑n
j=1 qjtuj(t, x)

(
pj + vt+1,x−aj − vt+1,x

)
∀t,x,u(t,x)

where vt,x is the decision variable we care about. If we restrict those value functions in affline form

ṽt,x =

T∑
τ=t

θt + λTx
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then clearly the corresponding optimal value performs an upper bound of the original DP. With this restric-
tion, the LP can be simplified to

min
θ,λ,z

T∑
t=1

θt + λTC

s.t. θt − qTt z ≥ 0, ∀t = 1, . . . , T

z + λTA ≥ p
z ≥ 0,λ ≥ 0

with its dual
maxy pTy
s.t. ATy ≤ C

0 ≤ y ≤
∑T
t=1 qt

which is nothing but the DLP above. One way to strengthen its approximation is to consider time-dependent
bid price λt, but the LP is not trivial to solve.

5 Discrete Choice Model

In many practical applications, customers are given multiple alternatives and only need to purchase one of
them, such as flight tickets and hotel offers. Normally, we suppose the choice set is finite and a customer
may not purchase any product. This type of discrete choice model is quite important in demand modeling
and understanding the customer behavior so that many operational decisions like price and assortment can
be made in an optimal manner.

5.1 Parametric Model

The parametric model assumes the choice probability depends on the deterministic utilities of each alterna-
tive.

A classic framework is Random Utility Model that assumes each customer has a random utility Ui = µi + εi
on each alternative i ∈ N = {1, ..., n}, where µi is deterministic cross all customers and εi is a random
variable that captures heterogeneity among customers and cannot be observed. The key assumption in
RUM is that each customer picks the alternative with the highest utility

qi(µ) = P (i = argmaxk∈N (µk + εk))

Multinomial Logit Model is the most popular choice model, which requires ε to be i.i.d Gumbel distributions

F (x) = e−e
−x/η

, then the resulting choice probability has closed-form expression

qi(µ) = P (Ui > Uj ,∀j 6= i) =
exp (µi/η)∑

k∈N exp (µk/η)

where the scale parameter η can be interpreted as the rationality level: if it tends to infinity, the choice is
completely random; if it tends to zero, the choice is dominated by deterministic utility.

Moreover, MNL preserves the Independence of Irrelevant Alternative property, which says the ratio of choice
probabilities between two alternatives does not depend on other alternatives

qi(µ)

qj(µ)
=

exp (µi/η)

exp (µj/η)
= exp ((µi − µj) /η)
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This property is mathematically concise but may not be realistic in some cases. In fact, this property only
makes sense when the feature of different alternatives are homogeneous, which means customers compare
them under some common criteria, i.e. convenience, price, time. Moreover, the only RUM that satisfy IIA
property is the MNL.

In order to deal with non-homogeneous problem, we can build a two-stage(multi-stage) choice system, which
is referred as Nested Logit Model. Instead of choosing alternative directly, we partition all alternatives into
K nests as the intermediate with the choice probability

qi(µ) =

(∑
j∈Bk exp (µj/λk)

)λk
∑K
l=1

(∑
j∈Bl exp (µj/λl)

)λl · exp (µi/λk)∑
j∈Bk exp (µj/λk)

so customers first choose a nest, and then choose a product within the nest. Clearly, the second stage is
nothing but a MNL model and IIA holds, while the first stage normally does not preserve IIA unless λk = 1
for all k.

Since NL is an extension of MNL, we’d like to understand the condition, under which it belongs to RUM.
Specifically, instead of i.i.d ε across alternatives, NL model has correlated ε with following cdf

F (ε) = exp

− K∑
k=1

(∑
i∈Bk

e−εi/λk

)λk =

K∏
k=1

exp

−(∑
i∈Bk

e−εi/λk

)λk
if i and j belong to different nests, they are un-correlated while if belong to the same nest, they are correlated.
λk ∈ (0, 1] measures the independence of i and j in nest k.

By investigating the distribution of ε, we observe that NL model is actually a special case of the generalized
extreme value models, where ε follows a generalized extreme value distribution

F (ε) = exp
(
−G

(
e−ε1 , . . . , e−εn

))
where G is a generating function. In particular, we can recall the form of MNL and NL

• MNL: G (y1, . . . , yn) =
∑K
k=1

(∑
i∈Bk y

1/λk
i

)λk
• NL: G =

∑n
i=1 yi

Further, we figure out what kind of G function is consistent with RUM. Motivated by NL, we can come up
with following conditions:

• Non-negativity: G(y) ≥ 0

• Positive homogeneity: G(λy) = λG(y),∀λ ≥ 0

• Infinity: yi → +∞⇒ G(y)→ +∞ for all i

• Alternating signs of derivatives: the k -th order cross partial derivatives has sign(−1)k+1

Beyond MNL and NL, some other RUM models are proposed such as ε is normal or exponentially distributed,
but they are more complicated either in expression or estimation.
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An important extension of RUM is to incorporate product features. For example, if we use MNL,

qi =
exp

(
βTxi

)∑n
j=1 exp (βTxj)

,∀i ∈ N

where x is the feature of alternative and β is the coefficient, which can be set to customer-dependent by
clustering customers into groups. Even though we are not able to partition customer types directly, we may
model β as random variables with some given distribution g(·) so that the choice probability is the average
of these customers

qi =

∫
exp

(
βTxi

)∑n
j=1 exp (βTxj)

g(β)dβ

which called Mixed Logit model, by which any RUM can be approximated arbitrarily closely.

Although RUM is concise both theoretically and practically, it stills relies on some strong assumptions about
the notion of utility, which are violated in many practical instances. For example, regularity means that if
i ∈ S ⊆ T, then qi,S ≥ qi,T , which is satisfied by all RUMs, but this property is disproved by halo effect,
decoy effect and compromising effect. Mathematically, if λk > 1 is NL, we can observe some situation that
is not consistent with RUM.

From another point of view, we consider Representative Agent Model where a central planner makes choice
q on behalf of the market. He has to consider the expected utility µ′q and also wants to achieve some
diversification to serve the market. Mathematically, he chooses

q(µ) = argmaxx∈∆n−1
µTx− V (x)

where ∆n−1 = {x|
∑n
i=1 xi = 1, x ≥ 0}. Suppose V (x) is the negative entropy η

∑n
i=1 xi log xi, then the

choice decision recovers the MNL model. In fact, for any RUM, one can always find a corresponding convex
V (·), so RAM is one way to generalize RUM.

Another generalization of RUM is semi-parametric choice model, which assumes ε is from a set of distributions
Θ. Thus the choice probability is

qSi (µ) = Pθ∗(µ)

(
i = argmax

k=1,...,n
(µk + εk)

)

where θ∗(µ) = arg sup
θ∈Θ

Eε∼θ [maxi=1,...,n µi + εi]. Different types of Θ have been proposed including MDM,

MMM and CMM. Essentially, it has been shown that RAM and SPCM are equivalent.

5.2 Non-Parametric Model

The rank list model assumes each customer has a preference list σ over all alternatives with totally n! types,
and one chooses the best alternative available in S. It has been shown that qi,S comes from a rank list model
if and only if there exists a distribution of U such that

qi,S = P (Ui ≥ Uj ,∀j ∈ S)

The Markov Chain model assumes that customer comes with a most preferred item i. If the item is available,
then chooses that option; otherwise, the customer will switch to another choice j with probability πij . In
fact, this model can recover MNL, and is a special case of rank list model.
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5.3 Estimation of Choice Model

Essentially, there are two goals of estimation: identify the relative importance among features and find the
correct parameters in choice model.

First, consider the feature-based choice model where the utility is a linear function of features: µi = βTxi,
and thus we could calculate the prediction of choice probability qi,Sk(β) for a given assortment Sk. Empiri-
cally, the frequency of i being picked in Sk is denoted as yi,Sk . The optimal β can be found by maximizing
the log likelihood function, or equivalently minimizing the cross-entropy

maxLL(β) =

K∑
k=1

mk

∑
i∈Sk∪{0}

yi,Sk log qi,Sk(β)

which is concave in many choice models including nested logit, exponomial, and MDM. Compared with least
square error, this objective prevents the predicted choice probability being zero.

Second, to incorporate model-specific parameters, the log-likelihood function will extent to LL(β, γ) and
optimize alternatively.

6 Multi-Product Pricing and Assortment Optimization

Discrete choice models are closely related to many operational decisions, such as multi-product pricing that
a firm sets prices for its n products to maximize revenue, and assortment optimization that a firm decides
the subset of products to offer given the prices.

6.1 Multi-Product Pricing

When customers see the price p, they would purchase the product based on a choice model q(u) where the
expected utility u is a linear function of p with µi = ai− bipi,∀i = 1, . . . , n. This setting is easy for analysis
but in practice, the function could be more complicated that depends on the historical prices, etc. The profit
maximization problem can be written as

maximize π(p) =

n∑
i=1

(pi − ci) qi(p)

We may first consider the demand is MNL, due to the form of qi(p), the objective function is not even quasi-
concave in p. Fortunately, it has been shown that for p∗ as the optimal price, it must hold that p∗i −ci−1/bi
is constant for all i ∈ N . We could set this constant as θ, which is precisely the optimal profit, then we
reduce the problem to single variable

θ =

n∑
i=1

(
1

bi
+ θ

)
exp (ai − bici − biθ − 1)

1 +
∑n
j=1 exp (aj − bjcj − bjθ − 1)

by showing that the equation has a unique solution, it’s easy to get the optimal price.

Intuitively, we could view pi − ci as the markup(marginal profit) on top of the cost. Compared with other
products, the higher price sensitivity, the lower markup. If all bi are equal, then we have equal markup
property. This result is also proved to be true for all GEV models.
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Remark. recall the problem we deal with in basic single product pricing, the objective is also not concave
in price and by reformulating as a function of demand, it becomes concave. Similar idea can be applied to
multi-product pricing as well, where the demand is interpreted as market share or choice probability.

In practice, we also face some constraints on prices and market shares, such as the certain price range,
inventory limit, etc. Based on the analysis above, we can see the difficulty adding price constraints but some
convenience of market share constraints.

6.2 Assortment Optimization

In some cases, such as airline and hotel, the prices are pre-determined by outside factors, and the firm needs
to decide which products to sell or offer to customers, which is so called assortment planning.

Let qi,S denote the probability for customers to choose product i in assortment S, then the assortment
planning problem can be written as

maximize RS =
∑
i∈S

(pi − ci) qi,S∪{0}

where qi,S∪{0} comes from a choice model.

Intuitively, we may want to offer all products to provide customers with more choices. However, it may
not be the case because the prices are given and they may not be appropriate under choice model. For the
case of MNL, on the one hand, more products should be offered so that the probability of outside option
or non-purchase can be squeezed; On the other hand, new product will ’steal’ the market share of existing
products, and thus if the price of new product is not set properly, the new product will cannibalize the
revenue.

The explanation above motivates to simplify the assortment optimization by focusing on the price or revenue.
We can order the product such that

p1 − c1 ≥ p2 − c2 ≥ · · · ≥ pn − cn

We call Sk = {1, . . . , k}, k = 0, . . . , n revenue-ordered assortments, with S0 = ∅. It has been shown in [2]
that there must be one of the revenue-ordered assortment that is optimal under MNL, which reduces the
computation to complexity O(n). Furthermore, if the firm can display at most M products, a polynomial-
time algorithm can be derived; if there is a capacity for each product, then the problem is equivalent to a
linear program.

7 Dynamic Revenue Management with Network Effect and Path
Dependency

7.1 Network Effect

First type of network effect is local network effect, whereby the purchase decision of a consumer is affected
by his neighbors actions. Suppose there is a social network and the connections between friends will change
the valuation of the goods, then the sellers may charge different prices to different buyers in the network to
take advantage of the network effect and thus maximize the revenue. A popular model considers n customers
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embedded in a network by an influence matrix G, with gij ≥ 0, gii = 0. The utility of customer i is

ui (xi, x−i, pi) = aixi − bix2
i − pixi + xi ·

n∑
j=1

gijxj

Given the prices, all the consumers are involved in a game to maximize their own utility. For ease of analysis,
we will look for equilibrium solution, in which

xi = argmaxyi ui (yi, x−i, pi)

we can get the equilibrium solution by solving a set of linear equations

xi =
ai − pi

2bi
+

1

2bi

∑
j 6=i

gijxj , ∀i

Then the optimal pricing problem can be written as

maximizep,x (p− c)Tx
subject to (Λ−G)x = a− p

with the optimal solution

p∗ = a− (Λ−G)

(
Λ− G+GT

2

)−1
a− c

2

by assuming a = ae, b = be, we can rewrite as

p =
a+ c

2
1 +

a− c
8b

GK
(
G+GT

2
,

1

2b

)
− a− c

8b
GTK

(
G+GT

2
,

1

2b

)
the first term is uniform across all customers to capture basic utility structure; the second and third terms
reflect the network effect.

Moreover, setting many different prices for different customers is usually impractical. A common situation
is one full price together with the other discounted price, whereby the problem becomes

maximize (p− c)T (Λ−G)−1(a− p)
subject to pi ∈ {pL, pH}

which is equivalent to a MAX-CUT problem.

Second type of network effect is global network effect, whereby the purchase decision is affected by the
aggregate purchase behavior of others. In this case, there is no limit on number of customers, and thus at
each time step k, a new participant will enter the market, observe the market share, make the choice and
update the market share.

Ui =

Intrinsic: fi︷ ︸︸ ︷
ai − bipi +

Network︷ ︸︸ ︷
γh (qi(k)) +

Noise︷︸︸︷
εi

The stochastic process of the market share has been shown to asymptotically follow a deterministic path
and converge to an equilibrium.

q̄i =
exp (ai − bipi + γqi)∑
j exp (aj − bjpj + γqj)

beyond this choice model, several related questions are studied such as multi-product pricing and assortment.
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7.2 Path Dependency

Polya’s Urn model is used to characterize stochastic choices in a dynamic process. Consider an example
of trial-offer market, whereby at the first stage, a product is sampled from a MNL model with position
bias, and at the second stage, a purchase/download decision is sampled according to a Bernoulli trial with
a probability based on product quality.

Specifically, the customer decides whether to listen a song with probability Pi (σ, dt) =
vσi (αai+di,t)∑n
j=1 vσj (αaj+dj,t)

,

where v captures position bias, a denotes product appeal, and d counts the number of purchase. If we use
Xi,t to describe the number of balls of color i at time t, then the sampled probability for color i can be

represented as Gi (Xt) =
vσiXi,t∑n
j=1 vσjXj,t

. With some probability, a new ball of color i will be added, which

corresponds to the purchasing action. Under some condition, it can be shown that the market converges to
a monopoly for the product of highest quality.

8 Online Optimization for Revenue Management

For the previous models, they rely on the fact that we know demand function or arrival distribution in
advance. If these information are not known or only partially known, online optimization kicks in to get
efficient policy. We will investigate two standard settings: competitive ratio and regret analysis. Interestingly,
to this point, despite the wide variety of algorithms developed and analyzed in the two literatures, there are
no algorithms that can guarantee good performance with respect to both the dynamic optimal(competitive
ratio) and the static optimal solutions(regret).

8.1 Competitive Ratio without Data

Consider the basic problem in capacity control that we need to come up with a policy to serve two fare
classes with limited capacity and no demand information. In this case, we are interested to analyze the
worst-case performance with any potential arrival sequence

Υ = inf
I∈Ωg

ν′Υ(I)

ν∗Υ(I)

where for any I ∈ Ωg, let ν′Υ(I) be the objective value achieved by the online algorithm for input I and
let ν∗Υ(I) be the objective value achieved by an optimal offline algorithm. The key assumption is pointed
out for analysis: demand for different fare classes are independent so that there is no cannibalization, no
decision-dependent demand response, and customer type is fixed.

A typical result is shown by [1] that for the continuous two-fare problem, no deterministic online booking
policy has a competitive ratio larger than b(r) = 1/(2 − r), where r = f2/f1. The result is proved by
considering two extreme arrival sequences, along with their performance. Moreover, it shows for the two-fare
booking problem, the policy with protection level θ1 = (1 − b(r))n has competitive ratio b(r) exactly. The
proof basically discusses two cases when either a high-fare class is rejected or a low-fare class is rejected,
along with their worst-case analysis.
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8.2 Regret with Online Data

Now we consider a different setting that given some domain K, at each step t, we have to choose a decision
xt ∈ K, and then the nature will give us a convex function ft and its corresponding loss ft(xt). Compared
with previous model, we always get information updated for optimizing decision. In this case, we are
interested to analyze the worst-case performance with any sequence of ft

regret T :=

T∑
t=1

[ft (xt)− ft (x∗)]

where x∗ is the optimal stationary solution.

The main theorem for this technique starts from [3], in which a sublinear regret is proved under some proper
conditions. Suppose max x∈K ‖∇ft(x)‖ ≤ G,maxx,y∈K ‖x−y‖ ≤ D. Online Gradient Descent with step sizes
ηt = D/(G

√
t), for t = 1, . . . , T, guarantees:

regret T =
T∑
t=1

ft (xt)− min
x∗∈K

T∑
t=1

ft (x∗) ≤ 3

2
GD
√
T

where the OGD is achieved as
yt+1 = xt − ηt∇ft (xt)
xt+1 = ΠK (yt+1)

The proof relies on the convexity of ft and non-expansion property of projection to get a bound with respect
to ηt, which can be set appropriately to achieve sublinear regret.

Essentially, the solution xt+1 in OGD can be obtained by solving a regularized linear approximation of ft(x):

xt+1 = argminx∈K

{
∇ft (xt) • x+

1

2ηt
‖x− xt‖22

}
More generally, we may consider other regularization term or Bregman Divergence associated with some
function φ such that we can replace ‖w − v‖22 by

Bψ(w, v) = ψ(w)− ψ(v)−∇ψ(v) • (w − v)

which measures the gap between the true function value and its linear approximation. For example, let
ψ(w) =

∑d
j=1 wj log (wj), it just measures KL divergence. Moreover, we can simplify the formulation to

xt+1 = argminx∈KBψ (x, yt+1)

where ∇ft (xt) + 1
ηt

(∇ψ (yt+1)−∇ψ (xt)) = 0

9 Data-driven Pricing

We aim to fit a RAM with aggregated sales data and then optimize the price. Normally, we have the following
representation

max
x∈∆N

N∑
j=0

(vij − αpj)xij − C(x) ∆N =

x ∈ RN+1
+ |

N∑
j=0

xij = 1



17



Suppose we are able to get the marginal distributions of utility residual for each product, and by separating
C(x), we end up with MDM that maximizes the expected utility under all joint distributions with given
marginal distributions of ε̃ij :

max
x∈∆N

N∑
j=0

(
(vij − αpj)xij +

∫ 1

1−xij
F−1
j (t)dt

)

The optimality condition for MDM

p∗j =
vij + F−1

j

(
1− x∗ij

)
− F−1

0 (1− x∗i0)

α
,∀j = 1, 2, . . . , N

which characterizes the relation between p and x. Then we can formulate the pricing problem with respect
to market share

maxx −
∑N
j=1 wjxj + 1

α

∑N
j=1 xjF

−1
j (1− xj)− 1

α (1− x0)F−1
0 (1− x0)

s.t.
∑N
j=0 xj = 1

x ≥ 0

For tractability, we assume that the following two conditions hold:

C1. xF−1
j (1− x) for each product j = 1, . . . , N is a concave function.

C2. (1 − x)F−1
0 (1 − x) for the outside option is a convex function. Then, the pricing problem is a convex

optimization problem in the market share x variables and the optimal prices are computable in polynomial
time.

Actually these two conditions are well satisfied for common distributions including normal, logistic, exponen-
tial, extreme value, Laplace distributions. To estimate xF−1(1− x) = y(x), we can estimate those discrete
values y(xt) corresponding to the data, and then construct a piece-wise linear function to optimize in pric-
ing problem. Apparently, some side constraints including monotonicity and convexity should be added in
estimation process.

10 Bundle Pricing

If the seller has n products to sell, he could use multi-product pricing technique for substitutable products,
but sometimes customers want more than one product, which can be regarded as different kinds of bundles.
Compared with naive component pricing, the common method to capture this effect is pure bundling that
customers either buy the bundle of all products or nothing.

Suppose customers have i.i.d valuation distribution over n products with all possible valuations larger than
cost c, then their purchasing decision comes from a joint distribution, with some known mean E[sn] and
variance V ar[sn]. From Chebyshev’s inequality, we know

P
(
|sn − E[sn]| ≥ k

√
V ar[sn]

)
≤ 1

k2

if we set the price p = E[sn]− k
√
V ar[sn], we have the lowerbound of the profit

π ≥ (E[sn]− k
√
V ar[sn]− nc)

(
1− 1

k2

)
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By setting k = n1/6, we have

RR =
π∗ − π
n

≤ (1− c)n−1/3

so when n is large, the regret rate tends to zero and pure bundling is asympotically optimal.

Bundle Size Pricing has been proposed recently and getting more and more popular

• Customers choose their own bundles

• The price of the bundle depends only on the size of the bundle

• The firm offer m sizes of bundles (m ≤ n)

• Note the set of all offered sizes as S

• Pure bundling is a special case of bundle size pricing

The benefit of bundle size pricing is two-folded. Intuitively, it’s profitable because it can capture customer
heterogeneous valuations and reduce the variance through bundling, which is similar as risk pooling effect.
Also, it’s operationally simple. However, since different customers’ valuations, they may choose different
bundle size for maximal surplus.

In general, most bundle prices could be determined by a mixed integer program (MIP). We take the mixed
bundling as an example

• Product set N = {1, . . . , n}

• There are K customers. Each customer k has a valuation over n products uk1, . . . , ukn

• Bundles are indexed as S ⊆ N

• The firm set a price pS for all S ⊆ N

• The surplus of the customer of a bundle is uki − pS

• Given the price, each customer choose a bundle that maximize her surplus

• Cost for bundle S : cS =
∑
i∈S ci

max
∑K
k=1

∑
S⊆N (pS − cS)xk,S

s.t. uk ≤
∑
i∈S uki − pS +M (1− xk,S)

uk ≥
∑
uki − pS∑

S⊆N xk,S = 1

pS + pT ≥ pS∪T
xk,S ∈ {0, 1}

We can linearize the problem to standard MIP with big-M, but this formulation is not general enough.

Let’s consider a more general case that customer valuations over items ũ = (ũ1, . . . , ũn)
T

is jointly distributed
as F , and we aim to get the optimal prices for different bundle sizes.
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Denote the ith order statistic of ũ as ũ(i), i.e., the i th largest value in ũ. Given ũ, the valuation for size j
bundle is

w̃j =

j∑
k=1

ũ(k) ∀j ∈ S

The induced demand for bundle size i is

q∗i (p) = PW̃∼G

(
i = arg max

j∈{0}∪S
w̃j − pj

)
where G is the joint distribution of w̃.

The firm maximizes its profit

maxp≥0

∑
i∈S (pi − ci) q∗i (p)

s.t. q∗i (p) = Pw̃∼G

(
i = arg max

j∈{0}∪S
w̃j(ũ)− pj

)
∀i ∈ S

The problem is obviously hard to solve, but we can handle it by CMM. Basically, CMM aims to optimize

Z∗ = sup
θ∈Θ

Eθ
(

max
j∈{0}∪S

(w̃j − pj)
)

with mean and covariance information. The choice probability in CMM is defined as

q∗j (p) = Pθ∗(j = arg max j∈{0}∪S(w̃j − pj
)
)

which is exactly what we want. Then since we know the equivalence to RAM, we can formulate the choice
probability as

q∗(p) = arg max
x

{
(a− p)Tx− f(x) : x ∈∆o

n

}
where

∆◦n ,
{
x|eTx ≤ 1, x ≥ 0

}
and

f(x) = − trace

((
Σ1/2S(x)Σ1/2

)1/2
)

By arguing that the optimal solution can not be at the boundary, we can characterize the problem as
unconstrained convex optimization with optimal condition. Then we can replace p in the original objective
function with q∗(p) and thus the final objective becomes concave.
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