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1 Strategic Game

1.1 Classic Strategic Games

• Nash equilibrium

– Typical examples: Battle of Sex, Prison Dilemma, Hawk-Dove, Matching Pennies

– Assumption: belief about typical component’s action is correct

– Interpretation: if everyone else adheres to it, no individual wishes to deviate from it

– Characterization: argue for some profiles, no player will not deviate, and for other profiles, some
player will deviate

– Existence: action set is nonempty, compact and convex; utility function is continuous and quasi-
concave on actions

• Strictly Competitive Game

– Maxminimizer of player: optimize the worst-case payoff in two player zero-sum game

– Property: a∗ is a NE if and only if for both players, a∗i is his maxminimizer

• Bayesian Game

– Typical Examples: auction(each player’s evaluation is the type)

– Assumption: player has a prior belief on the state ω, then he receives the signal t and update his
posterior belief; for applications, player holds the preference relation over lotteries, which takes
the form of expected utility function

– Equilibrium: s∗ is a NE if and only if for any player i, conditioning on any possible type ti,
given other players’ strategies, s∗i (ti) is the best response compared to all strategies over posterior
distribution of states.

• Mixed Strategy Nash Equilibrium

– Typical Examples: matching pennies

– Definition: a mixed NE is a NE of its mixed extension

– Assumption: each player can assign a probability distribution over his action sets, and then the
utility is calculated as expected value over all possible action profile(players’ distributions are
independent)

– Theorem: every finite strategic game has a mixed NE
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– Equilibrium: α∗ is a mixed NE if and only if for any player i, given other players’ strategies, α∗i
is the best response compared to all pure strategy

– Property: every action in the support of any player’s mixed NE strategy yields that player the
same equilibrium payoff

– Characterization: calculate the best-response equations for all the players, and then take the
intersection

• Correlated Equilibrium

– Assumption: compared with mixed strategy, it does not require independence on players’ strategy
marginal distribution. Instead, it’s characterized by joint distribution such that players could
somehow avoid bad outcome

– Definition: there is a set of states Ω and π is a probability measure on Ω, each player has an
information partition Pi over Ω such that his strategy σi will perform the same action for states
ω lie in the same cell of Pi

– Equilibrium: σ is a CE if and only if for any player i, conditioning on any information cell Pi with
π(Pi) > 0, σi is the best response compared to other actions over posterior distribution of states.

– Property: any convex combination of CE payoff profiles is a CE payoff profile

1.2 Rationalizability

• Rationalizability

– Definition: a product subset R of action set A is rationalizable if for any player i, any action of
his rational set Ri, there exists a corresponding belief about other players, such that ai is a best
response compared to other actions

– Interpretation: the notion of rational determines not what actions should actually be taken, but
what actions can be ruled out with confidence

• Never-Best Response

– Definition: given X, some actions aj can be iteratively eliminated if for each µ ∈ ∆X−j , there is
a∗j ∈ Aj gives higher expected utility than aj

– Interpretation: compared with rationalizability, IENBR generates the final set R∗ in the other
direction by iteratively removing bad actions, and clearly NE will not be eliminated

– Property: in dominance-solvable games, NE = R∗

• Strictly Dominated Action

– Definition: action ai of player i is strictly dominated if there is a mixed strategy αi such that for
any other players’ actions, αi gives higher expected utility, and we can also construct the final
rational set R∗ by iteratively removing strictly dominated actions

– Property: SDA = NBR

• Summary: we can define rationalizability as the consequence of common knowledge of rationality, or
as the result of iterative elimination procedure. Hence, we have R∗ = IENBR = IESDA
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2 Interactive Epistemology

2.1 Knowledge Model

• Partitional Information Structure

– P1: ω ∈ P (ω) for every ω ∈ Ω

– P2: if ω′ ∈ P (ω) then P (ω′) = P (ω)

• Knowledge Operator

– Definition: KE = {ω ∈ Ω | P (ω) ⊆ E}
– Interpretation: for an event E, player knows E at ω if P (ω) ∈ E, so we care about when the

player knows E, which characterized by KE

– Property

∗ K1: KΩ = Ω

∗ K2: if E ⊆ F , then KE ⊆ KF
∗ K3: KE ∩KF = K(E ∩ F )

∗ K4: KE ⊆ E
∗ K5: KE ⊆ KKE
∗ K6: ¬KE ⊆ K¬KE

• Common Knowledge

– Definition: we denote KiE as i knows E, and ∩i∈NKiE as the event that E is mutually known,
then we have representation of common knowledge

CKE = KE ∩KKE ∩KKKE ∩ ....

– Alternative Definition: an event F ∈ Ω is self-evident if KF = F , then under K4, an event E is
CKE at ω if it includes a self-evident event F containing ω

– Property: E is self-evident if and only if E is a union of members of the partition induced by Pi
for all player i

– Agreeing to Disagree: CKE[µi;µj ] = ∅ if µi 6= µj

2.2 Epistemic Foundation

• Model of Knowledge

– Definition: given a strategic game, we need some parameters Ω is the set of states, Pi is player
i’s information partition, ai(ω) is i’s action at ω, µi(ω) is i’s belief at ω

– Interpretation: each ω ∈ Ω consists of the description of each player’s knowledge, action and belief

– Rationality: we say i is rational at ω if ai(ω) is a best response of player i to µi(ω) in ∆[a−i(Pi(ω))],
in other words, i’s action at the state maximizes his expected utility with respect to the belief
that i holds at that state, where the belief is required to be consistent with his knowledge

– Rational Set: we define Ri = {ω : i is rational at ω}

• Epistemic Conditions for Nash Equilibrium
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– Definition: let ω ∈ ∩i∈N{Ri ∩Ki[a−i = a−i(ω)]}, then a(ω) is a NE

– Interpretation: if each player is rational and knows the action choices of the others, then the
players’ choices constitute a NE

• Epistemic Conditions for Mixed Strategy Nash Equilibrium

– Definition: suppose each player’s belief is consistent with his knowledge, and let ω ∈ ∩i,j=1,2;i 6=j{KjRi∩
Kj [µi = µi(ω)]}, then µ(ω) is a mixed-strategy NE

– Interpretation: if the rationality of the players and their ’consistent’ conjectures are mutual knowl-
edge, then the conjectures consitute a mixed-strategy NE

• Epistemic Conditions for Rationalizability

– Definition: let ω ∈ CKR, then a(ω) is a rationalizable strategy profile

– Interpretation: if a state is common knowledge of rationality, then we can find a self-evident set
to construct rationalizable subset Z

3 Extensive Games

3.1 Extensive Games with Perfect Information

• Model

– History: set of sequences that each member is a history h, whose component is an action

– Strategy: a complete plan s that specifies the action chosen by the player in every contingency,
even for histories that never reached

• Nash Equilibrium

– Equilibrium: for every strategy s∗i of player i, s∗i is the best response to s∗−i

– Property: s∗ is NE if and only if it is a NE of strategic game derived from extensive game

• Subgame Perfect Equilibrium

– Definition: for every subgame with P (h) = i, we have s∗i is the best response to s∗−i for player i,
then s∗ is SPE

– Equilibrium: s∗ is SPE of a finite-horizon game if and only if ∀h ∈ H with P (h) = i, s∗i is the
best response to s∗−i, compared with other strategies that differs from s∗i only in the first action
of subgame

– Property: s∗ is a SPE if and only if it’s a NE in every subgame

3.2 Extensive Games with Imperfect Information

• Model

– Interpretation: players only have partial information about the history, when choosing an action,
he need to form an expectation about the unknowns, not only derived solely from the players’
equilibrium behavior in the future, but also from past behavior inconsistent with equilibrium

– Information Partition: each player has his own information structure Ii such that he cannot
distinguish the histories in the same cell with A(h) = A(h′)
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– Perfect Recall: at every point every player remembers whatever he knew in the past, which is a
common assumption in imperfect game

– Strategy

∗ Pure Strategy: compared with perfect information, now for every contingency, the strategy
is a function from every cell in the information partition to its corresponding action

∗ Mixed Strategy: there is an outcome-equivalent behavioral strategy with Kuhn’s theorem,
and vice versa

• Perfect Bayesian Equilibrium

– Interpretation: assume all the information partition cells are singleton, and the only uncertainty
comes from initial chance move, then the problem can discussed in Bayesian setting

– Equilibrium: a PBE is the combination of a strategy profile s and a belief assessment profile µ,
such that for every player i, he satisfies sequential rationality (at each of his information sets,
si is a best response to s−i, given his belief µi at that information set) and belief consistency
(at information sets on the equilibrium path, his belief µi is derived from Bayes’ rule using the
strategy profile s; at information sets off the equilibrium path, his belief µi is derived from Bayes’
rule using the strategy profile s where possible)

• Sequential Equilibrium

– Equilibrium: a SE is an assessment (β, µ) with a trembling sequence of totally mixed behavioral
strategies βk −→ β such that for every player i, for every his information set Ii, he satisfies
sequential rationality (βi is his best response to β−i, given that belief µ(Ii)) and sequential
consistency (µk(Ii) −→ µ(Ii) where µk(Ii) is the belief assessment which derived from βk using
Bayes’ rule)

– Property: the notion of SE requires that the beliefs at different information sets not reached in
the equilibrium be derived from the same trembling sequence while the notion of PBE imposes
no such restriction

• Perfect Equilibrium

– Equilibrium: compared with SE, it’s required that for every player i, for every information set,
βi(Ii) is best response to not only β−i, but also βk−i

– Property: PE ⊆ SE ⊆ PBE ⊆ SPE ⊆ NE

4 Implementation Theory

• Model

– Environment

∗ N: set of players

∗ C: set of outcomes

∗ P: set of preference profiles or states

∗ G: set of games with consequences in C

– Choice Rule: f : P −→ C is a function that assigns a subset of C to each preference profile in P

• S-implementation
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– S-implementation: the choice rule f is S-implementable in 〈N,C,P,G〉 if ∃G ∈ G with outcome
function g such that

g(S(G,�)) = f(�),∀ �∈ P

– Truthfully S-implementation: the choice rule f is truthfully S-implementable in 〈N,C,P,G〉 in
which G is a set of strategic game forms for which the set of actions of a player i is P, if ∃G ∈ G
with outcome function g such that

g(a∗) ∈ f(�) ∩ g(S(G,�)),∀ �∈ P

where a∗i =� for each i ∈ N
– Nash Implementation: if we restrict the solution concept to NE

– Revelation Principle: if f is Nash-implementable, then it’s truthfully Nash-implementable.

• Maskin’s Monotonicity

– Definition: a choice rule f : P −→ C is monotonic if whenever c ∈ f(�) and c /∈ f(�′), there is
some player i ∈ N and some outcome b ∈ C such that c �i b but b �′i c

– Property: every Nash-implementable choice rule must be monotonic

5 Revealed Preference Analysis

• Afriat’s Theorem

– Idea: A utility function U is locally non-satiated if at every bundle x and for any open neigh-
borhood N of x, there is a y such that U(y) > U(x). Suppose the customer maximizes a locally
non-satiated utility function. Then there will be some observable restrictions on the data and
we’d like to know the necessary and sufficient condition to recover such utility function from data.

– GARP: If ptxt ≥ ptxs, then we say xt is directly revealed preferred to xs. Moreover, the data O
is said to obey GARP if the only revealed preferred cycles are weak revealed preferred cycles.

– Theorem: A data set O = {(pt, xt)}t∈T is consistent with the maximization of a locally non-
satiated utility function(rationalizable) if and only if it obeys the generalized form of revealed
preference(GARP).

∗ Necessary: If xt � xs, then U(xs) ≤ U(xt), similar argument for strictly preferred. Therefore
whenever there is a RP cycle, we have a utility cycle, which means all the utilities must equal.

∗ Sufficient: It’s obvious that we can recover a preference from data, and we show such prefer-
ence can be extended from X to Rl in a way that rationalizes the data. Specifically, we need
two steps:

1. The LP is feasible
φk ≤ φt + λtpt(xk − xt), λt > 0,∀k 6= t

For simplicity, we consider the case of strict preference

2. Given the decision variables of LP, we can construct a continuous, strictly increasing,
piecewise-concave utility function that rationalizes the data:

U(x) = min
(pt,xt)

{φt + λtpt(x− xt)}

• Strongly Separable Utility

– Idea: A utility function is additively separable if U(x) =
∑
i vi(xi) where vi(x) is differentiably

increasing and concave.
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– Claim: The data O is rationalizable by an additively separable function if and only if there are
numbers βti > 0, for all (i,t), such that

1. whenever xti > xsi , then βti ≤ βsi (Decreasing function)

2. for all t ∈ T , we have
βt
i

pti
=

βt
j

ptj
(First order condition)

• Quasi-linear Utility Maximization

– Idea: We move forward to require the utility function be quasi-linear, which is maximized by
customer as

xt ∈ argmax{F (x)− px} ∀t ∈ T

– Law of Demand: for any subset of observations {(pti , xti)}Ni = 1 chose from data, the following
inequality holds

pt1(xt1 − xt2) + · · ·+ ptN (xtN − xt1) ≤ 0

– Theorem: Given a finite set of observations, the following statements are equivalent:

1. O admits a quasi-linear rationalization

2. there exists a function F such that for any xt, xs ∈ X , we have

F (xt)− ptxt ≥ F (xs)− ptxs

3. O obeys law of demand

Proof. (3) implies (1): define F as the minimum of a finite set of strictly increasing affine functions.

6 Decision Making under Risk and Uncertainty

• Axiomatic Foundations

– Independence Axiom: Given two lotteries π and ϕ, we denote by aπ+ (1− a)ϕ the lottery where
outcome x ∈ X occurs with probability aπ(x) + (1 − a)ϕ(x), and independence axiom says for
a ∈ (0, 1)

π � ρ⇐⇒ aπ + (1− a)ϕ � aρ+ (1− a)ϕ

– Subjective Expected Utility: under independence axiom, there exists a utility function u such
that

π � ρ⇐⇒
∑
x∈X

u(x)π(x) ≥
∑
x∈X

u(x)ρ(x)

The function u is unique up to affine transformations and this model characterizes the objective
expected utility over risk.

The proof of three state case has three steps:

1. Suppose e1 � e2 � e3, and we get e1 � (t, 0, 1− t) � e3

2. If t′′ > t′, then (t′′, 0, 1− t′′) � (t′, 0, 1− t′), so indifference curves are parallel straight lines

3. For any (a, b, c) ∼ (t, 0, 1− t), define v(a, b, c) = t, such that

v(a, b, c) = θv(te1 + (1− t)e3) + (1− θ)v(se1 + (1− s)e2) = av(e1) + bv(e2) + cv(e3)

– Objective Expected Utility: This model characterizes the subjective expected utility in uncertain
environment.

• Risk Aversion
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– Definition: The agent is said to be risk averse if, given any lottery π, he always prefers the certain
outcome x̄ =

∑
x∈X π(x)x to the lottery π, which means

u(x̄) ≥
∑
x∈X

π(x)u(x)

This is true if and only if the utility function is concave.

– Example of Demand for Insurance: an agent has wealth W in the good state and w in the bad
state, and he can buy insurance z with premium q. In particular, he has to choose z to maximize
his expected utility

pGu(W − qz) + pBu(w − qz + z)

suppose the insurance is fair, so that expected profit is zero with

pG(qz) + pB(qz − z) = 0

if the agent is risk averse, then he should choose z so that

W − qz = w − qz + z

• Comparison of Utility Functions

– Idea: In order to compare different utility functions, we need to quantify the level of risk aversion,
or the preference over certainty, so we introduce certainty equivalent of π as C(π) such that
u(C(π)) =

∑
π(x)u(x). In this way, we could define risk premium as the difference between

expected value and certainty equivalent: P (π) = x̄ − C(π). Moreover, the coefficient of risk

aversion ρu is defined by ρu(x) = −u
′′(x)
u′(x) .

– Proposition: The following three criteria to compare utility functions are equivalent

1. For all lotteries π, Pu(π) ≥ Pv(π)

2. ρu(x) ≥ ρv(x),∀x
3. There exists an increasing concave function h such that h ◦ v = u

• Stochastic Dominance

Instead of comparing different utility functions, from the perspective of consumers, we would like
differentiate various of lotteries. We will present three dominance conditions from strong to weak.

– Monotone Likelihood Ratio Order

∗ Definition: π(x,θ′′)
π(x,θ′) is increasing in x whenever θ′′ > θ′.

– First Order

∗ Definition: if for all increasing utility functions u, we have∫
u(x)π(x)dx ≥

∫
u(x)π̃(x)dx

we say π dominates π̃ by first order stochastic dominance.

∗ Necessary and Sufficient Condition: the lottery π dominates π̃ by first order stochastic dom-
inance if and only if Fπ(x) ≤ Fπ̃(x) for all x ∈ [r0, r

0], where Fπ(x) =
∫ x
r0
π(t)dt.

∗ Interpretation: for any outcome x, the curve of cumulative distribution Fπ(x) is always below
the other one, which means the consumer always has better chance to get higher utility.

– Second Order

8



∗ Definition: if for all increasing and concave utility functions u, we have∫
u(x)π(x)dx ≥

∫
u(x)π̃(x)dx

we say the lottery π dominates π̃ by second order stochastic dominance.

∗ Necessary and Sufficient Condition: the lottery π dominates π̃ by second order stochastic
dominance if and only if

∫ r
r0
Fπ(x) ≤

∫ r
r0
Fπ̃(x) for all r ∈ [r0, r

0]. we say π dominates π̃ by
second order stochastic dominance.

∗ Interpretation: similarly with first order dominance that for small x, lottery π should have
lower chance but higher chance for large x, but the utility is concave, and thus not worthwhile
to put too much weight on large x, so we allow the cumulative function Fπ to catch up as a
sense of trade-off; this dominance relation is not necessarily comparable because it is possible
to have opposite inequalities for different x.

– Mean Preserving Spread

∗ Idea: it’s very common that two lotteries have the same(or almost similar) means, and we
would like to explore some properties.

∗ Definition: if compound lottery G has first stage outcome distribution F and second stage
zero mean distribution Hx, we say G is a mean preserving spread of F .

∗ Proposition: the following conditions are equivalent given two distributions F and G with
the same mean

1. G is a mean preserving spread of F

2. for all concave functions u, we have∫ r0

r0

u(x)dF (x) ≥
∫ r0

r0

u(x)dG(x)

3. F second order stochastic dominates G

4. For all r ∈ [r0, r
0], we have ∫ r0

r0

Fπ(x)dx ≤
∫ r0

r0

Gπ(x)dx

7 Monotone Comparative Statics

• One-dimensional Comparative Statics

– Idea: we are interested in how arg maxx∈X f(x; s) varies with some parameter s. For instance,
a firm makes the decision to maximize its profit by f(x; c) = xP (x) − cx or f(p1; p2) = (p1 −
c1)D1(p1; p2).

– Definitions

∗ Set Comparison: S′′ donimates S′ in the strong set order if for any x′′ ∈ S′′ and x′ ∈ S′, we
have max{x′′, x′} ∈ S′′ and min{x′′, x′} ∈ S′.

∗ Single Crossing Property: φ has the single crossing property if φ(s′) ≥ (>)0 =⇒ φ(s′′) ≥ (>)0
where s′′ > s′.

∗ Single Crossing Differences: the family of functions {f(, s)}s∈S obeys single crossing differ-
ences if for all x′′ > x′, the function δ(s) = f(x′′; s) − f(x′; s) is a single crossing function.
Strictly increasing function preserves single crossing differences.
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∗ Increasing Differences: the family of functions {f(, s)}s∈S obeys increasing differences if for
all x′′ > x′, the function δ(s) = f(x′′; s)− f(x′; s) is an increasing function.

– Theorem: the family of functions {f(, s)}s∈S obey single crossing differences if and only if
arg maxx∈Y f(x; s) is increasing in s for all Y ⊆ X.

Proof. For necessity, just choose Y = {x′, x′′}, then the result follows from the definition; For
sufficiency, we denote O′′ = arg maxx∈Y f(x; s′′) and O′ = arg maxx∈Y f(x; s′). Assume s′′ > s′

and x′′ ∈ O′′, x′ ∈ O′ . We have to show max{x′′, x′} ∈ O′′ and min{x′′, x′} ∈ O′, so we only need
to consider x′ > x′′. Since x′ ∈ O′, we have f(x′; s′) ≥ f(x′′; s′). By single crossing differences,
f(x′; s′′) ≥ f(x′′; s′′) leads to x′ ∈ O′′. With the similar argument we can show x′′ ∈ O′.

Applications

∗ f(x; c) = xP (x)−cx: it’s obvious that f(,−c) obeys increasing differences and thus decreasing
in c. Therefore, as marginal cost increases, the profit-maximizing output will decrease.

∗ f(p1; p2) = (p1 − c1)D1(p1; p2): if ln f(, p2) obeys increasing differences and then increasing
in p2. Therefore, as other firm increases the price, the firm’s optimal price will also increase.

• Optimization under Uncertainty

– Idea: suppose the family of functions {v(, s)}s∈S obeys increasing or single-crossing differences,
so the optimal decision x is also increasing in s. In practice, we usually don’t know s in advance,
so x is chosen to maximize some expected value as

V (x, θ) =

∫
S

v(x, s)λ(s, θ)ds

where θ controls the density distribution of s. Intuitively, if higher states are more likely with
respect to λ(s, θ), then the optimal decision should also be higher.

– Monotonicity in Density Function

∗ Definition: a family of density functions {λ(, θ)}θ∈Θ is said to be ordered by FOSD if λ(s, θ′′)
first order stochastically dominates λ(s, θ′) whenever θ′′ > θ′. Similarly, we can also define
the MLR order correspondingly. In particular, we would like to know the condition that leads
to the monotonicity of optimal decision with respect to density function.

∗ Theorem 1: suppose the family of value functions obeys increasing differences and the family
of density functions is ordered by FOSD, then the family of expected value functions also
obeys increasing differences, and consequently, the optimal decision is increasing in θ.

∗ Theorem 2: suppose the family of value functions obeys single crossing differences and the
family of density functions is ordered by MLR, then the family of expected value functions
obeys single crossing differences, and consequently, the optimal decision is increasing in θ.

– Applications

∗ f(x; c) = xP (x)− cx: consider v(x;−c) = u(f(x;−c)), even though f(x;−c) obeys increasing
differences, given u as a increasing utility function, we can only conclude v(x;−c) obeys single
crossing differences. If λ(c, θ) performs in the MLR sense, then the firm will choose to produce
less when higher c becomes more likely.

∗ f(x; s) = (w − x)r + xs: an investor with wealth w is given r as the payoff of safe asset and
s as the payoff of the risky asset, which is uncertain. If λ(s, θ) performs in the MLR sense,
then the investor will choose to put more in risky asset when higher s becomes more likely.

• Multi-dimensional Monotone Comparative Statics
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– Definition: when the decision output is a vector, the supremum and infimum of two decisions
are derived as element-wise maximum and minimum respectively. A function F is said to be
supermodular if F (x′ ∨ x′′)−F (x′′) ≥ F (x′)−F (x′ ∧ x′′). The necessary and sufficient condition
for supermodular is nonnegative cross derivatives.

– Idea: consider a production problem with f(x;w) = pF (x) − wx where p and w are output and
input prices respectively. x is the input of many resources, and F (x) is the output of product
quantity. We care about the condition of F that leads to monotonicity of x with respect to w.

– Theorem: suppose F is supermodular, then if w′ < w′′, we have arg max f(x;w′) ≥ arg max f(x;w′′)
in the strong set order.

• Increasing Maps

– Tarski Fixed-Point Theorem: suppose φ is increasing function from X to X, then the set of fixed
points is non-empty. In particular, x = sup{x ∈ X : x ≤ φ(x)} is the largest fixed point while
x = inf{x ∈ X : x ≥ φ(x)} is the smallest fixed point.

– Increasing Fixed-Point Theorem: suppose φ(, t) is increasing in (x, t), then the largest and smallest
fixed points of φ(, t) are both increasing in t.

Remark. φ only need be increasing but not necessarily continuous and X need not be convex.

• Games of Strategic Complements

– Definition: G is a game of strategic complements if for every player a, there is an increasing
function φa : X−a −→ Xa, such that φa(x−a) ∈ BRa(x−a) for all x−a.

– Equilibrium: every game of strategic complements has a pure strategy Nash equilibrium. We can
construct φ(x) = (φa(x−a))a∈A as an increasing function and then apply Tarski theorem.

– Condition for Strategic Complements: suppose that for every player a, his utility function ua is
continuous in xa and has single crossing differences in (xa;x−a), then it’s a game of strategic
complements and there are the largest and smallest NE decisions.

Proof. By the theorem of monotone comparative statics, whenever x′′−a > x′−a, we haveBRa(x′′−a) ≥
BRa(x′−a). Let φa(x−a) = maxBRa(x−a), which is increasing and thus G has NE. Then we can
argue x = sup{x ∈ X : x ≤ φ(x)} is the largest NE.

Application: for f(p1; p2) = (p1 − c1)D1(p1; p2), if f(p1; p2) has single crossing differences, and D
is continuous in p, then the firms are playing a game of strategic complements so there is a largest
and a smallest NE.

• Equilibrium Comparative Statics

– Idea: compared with single-agent comparative statics, we are dealing with equilibrium decision
outputs now, so we’d like to know what’s the influence to NE when some parameter t changes(e.g.
marginal cost of one firm).

– Theorem: suppose that for every player a 6= â, ua is continuous in xa and has single crossing
differences in (xa;x−a).; for player â, uâ is continuous in xâ and has single crossing differences in
(xâ; (x−â, t)). Then the largest NE of the game at t′′ is larger than the largest NE of the game at
t′ whenever t′′ > t′.

Proof. It’s easy to argue that φâ(x−â, t) = maxBRâ(xa, x−â, t) is increasing in t, thus the largest
fixed point x∗∗(t) of φ(, t) is the largest NE. By the theorem from Increasing Maps, we know the
largest fixed point of φ(, t) is also increasing in t.

11



Application: for f(p1; p2) = (p1 − c1)D1(p1; p2), if firm 1 experiences an increase in its marginal
cost, since f(p1, (p2, c1)) has single crossing differences, we know the largest NE of this game is
also increasing. For firm 2, he is better off because

f(p∗∗2 ; p∗∗1 ) ≥ f(p∗∗
2

; p∗∗1 ) ≥ f(p∗∗
2

; p∗∗
1

)

8 Equilibrium in Finanical Economy

• Financial Assets

– Portfolio: there are L states of the world tomorrow, and S securities, resulting a payoff matrix D.
A portfolio z is a linear combination of assets along with its payoff vector Dz. The Span(D) is
called asset span, and if it is a strict subspace of RL, then the economy has incomplete markets.

– Endowment: an agent has endowment ω ∈ RL+1
+ , then with a portfolio z, his contingent con-

sumption tomorrow is ω−0 +Dz.

• Agent’s Problem

– Utility Maximization: the agent’s utility function is the combination of today’s utility and dis-
counted tomorrow’s utility. The decision x for utility maximization is restricted in a budget set
B determined by (q, ω,D). Instead of optimize x directly, we will optimize the portfolio z.

• Financial Economy

– Asset Equilibrium: consider there is a set of agents A who are in the same economy with their own
utility functions and buy or sell the assets with some price q. A price q∗ in RS is an equilibrium
price of this financial economy F if

1. for each agent a, there is za such that his utility Ua is maximized

2.
∑
a∈A z

a = 0

– Consumption Equilibrium: if q∗ is an equilibrium price of F and let za, xa be agent a’s asset and
consumption demand respectively, then provided Ua is strongly monotone, we have

∑
a∈A x

a =∑
a∈A ω

a.

• Constrained Pareto Optimality

– Feasibility: the allocation {xa}a∈A is constrained feasible allocation if
∑
a∈A x

a =
∑
a∈A ω

a and
there is {za}a∈A such that

∑
a∈A z

a = 0 with xa−0 = ωa−0 +Dza. Basically, it means the allocation
cannot increase or decrease the asset and should be characterized by some payoff matrix.

– Optimality: the allocation {xa}a∈A is constrained Pareto optimal if there does not exist another
constrained feasible allocation that is Pareto superior.

– First Welfare Theorem for Incomplete Markets: if Ua is strongly monotone for all a, then every
equilibrium allocation is constrained Pareto optimal. The proof supposes there is a Pareto superior
allocation and shows that consumption equilibrium does not hold, which is a contradiction.

• Equilibrium Invariance

– Idea: there are many possible markets with different payoffs, and if we only care about equilibrium
behavior, we can show when the span of payoff matrix keeps unchanged, then the equilibrium does
not change in an essential way.
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– Theorem: suppose q∗ is an equilibrium price of F (D), za is agent a’s portfolio, which achieves
consumption of xa, then the economy F (D) with D′ = DK for some invertible K, has the
equilibrium price q∗K. The equilibrium portfolio of agent a is K−1za and his consumption is xa,
which is unchanged.

• Arbitrage

– Definition: if there is z ∈ RS such that qz ≤ 0 and Dz ≤ 0 with either inequality strict, we say q
admits arbitrage. An equilibrium price cannot admit arbitrage otherwise the utility maximization
will be infinite.

– Theorem: if q admits no arbitrage, then there is p >> 0 such that

qs =
∑
l∈L

pldls

or equivalently q = pD.
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