
BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 1: Introduction
Lecturer: Zhenyu Hu

1.1 Basics of Optimization Problems

A generic optimization problem can be written as

min f(x)
s.t. x ∈ X .

Here f : X → R is called the objective function, its argument x being the decision variable(s). The set X
where x can be taken from is called the feasible set, and its element the feasible solution.

For the most part of the lecture, we consider problems where X ⊆ Rn. In this case, x = (x1, ..., xn).

Sometimes one may wish to deal with problems lying in infinite-dimensional space, e.g., X being a set of
random variables. The underlying theory will not be explicitly dealt here (though many geometric insights
are similar). Interested students are referred to David Luenberger’s Optimization by Vector Space Methods
for the classic book on this topic.

The set X in the generic optimization problem above is an abstract geometric concept and is quite often
hard to handle analytically. More commonly, we are concerned with the following more explicit problem

min f(x)
s.t. hi(x) = 0, i = 1, ...,m,

x ∈ Rn.

Here, the equations hi(x) = 0 are called the constraints (more specifically equality constraints). Clearly,
with

X = {x ∈ Rn|hi(x) = 0, i = 1, ...,m},
this is a special case of the generic problem we had at the beginning. The constraints here simply offer
an algebraic characterization of the geometric object X , and such characterization—as we shall see—is not
necessarily unique.

If there exists x∗ ∈ X such that f(x∗) ≤ f(x) for any x ∈ X , then we call x∗ the optimal solution and
z = f(x∗) the optimal value. The existence of such x∗ is not guaranteed. In such case, we should replace
min by inf and the optimal value is defined by z = inf{f(x)|x ∈ X}, which could be −∞ (we then call the
problem unbounded) or +∞ (when X = ∅).

1.1.1 More special forms

Linear Programming Problem. A general linear programming problem can be described as

min cTx
s.t. aTi x ≥ bi, i ∈M1,

aTi x ≤ bi, i ∈M2,
aTi x = bi, i ∈M3,
xj ≥ 0, j ∈ N1,
xj ≤ 0, j ∈ N2,

(1.1)

1-1

Lecture 1: Introduction 1-2

where M1,M2,M3, N1, N2 are some index sets and cT = (c1, ..., cn), aTi = (ai1, ..., ain).

Example 1.1 Consider cT = (2, 5), M1 = {1},M2 = {2}, N1 = {1, 2} and aT1 = (1, 1), b1 = 6, aT2 =
(1, 2), b2 = 18. We then have

min 2x1 + 5x2

s.t. x1 + x2 ≥ 6,

x1 + 2x2 ≤ 18,

x1, x2 ≥ 0.

Convex Programming Problem. A set X is convex if for any x, y ∈ X , and any 0 ≤ λ ≤ 1, we have

λx+ (1− λ)y ∈ X .

The point λx + (1 − λ)y is called the convex combination of x and y. Some simple convex and nonconvex
sets are illustrated in the figure below.

𝒙

𝒚

𝒙

𝒚 𝒙

𝒚

A function f : X → R is convex if X is a convex set and for any x, y ∈ X and 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

A convex programming problem is then one of the form

min f(x)
s.t. gi(x) ≤ 0, i = 1, ..., l,

aTi x = bi, i = 1, ...,m,

where f(·), g1(·), ..., gl(·) are convex functions. It can be shown that [exercise] the feasible set in this case:

X =

{
x ∈ Rn gi(x) ≤ 0, i = 1, ..., l

aTi x = bi, i = 1, ...,m,

}
.

is a convex set.

Sometimes one may also refer to the abstract form

min f(x)
s.t. x ∈ X ,

where f is a convex function and X is a convex set as convex programming problem. However, in order to
solve such problem, one still needs to find an algebraic description of the set using convex inequalities and
linear equality constraints.

Lecture 1: Introduction 1-3

Integer Programming Problem. An integer programming problem is defined similarly to linear pro-
gramming except the decision variables are constrained to take integer values. For instance:

min cTx
s.t. aTi x = bi, i = 1, ...,m

xj ≥ 0,
x integer,

is an integer programming. If only part of the variables are restricted to be integer values, then it is called
a mixed integer programming problem. If furthermore, all the variables are constrained to be either 0 or 1,
i.e., xj ∈ {0, 1}, then the problem is called binary integer programming problem.

Integer programming problems are generally not convex, since convex combinations of integers may no longer
be integer.

1.1.2 Comparison of optimization problems

Consider two generic optimization problems

z1 = min f1(x)
s.t. x ∈ X (1.2)

and
z2 = min f2(y)

s.t. y ∈ Y (1.3)

Note that X and Y are not necessarily the subsets of the same space.

We say problem (1.3) is a relaxation of problem (1.2) if for any x ∈ X , there exists a y ∈ Y such that
f2(y) = f1(x). By definition, clearly we have z2 ≤ z1 if (1.3) is a relaxation of (1.2). We also call (1.3)
provides a lower bound to (1.2); and when it happens that z2 = z1, we say the lower bound (relaxation) is
tight.

Example 1.2 (Linear Relaxation) Consider problem (1.2) taking the following form

min 2x1 + 5x2

s.t. x1 + x2 ≥ 6,

x1 + 2x2 ≤ 18,

x1, x2 ≥ 0,

x integer.

Then its linear relaxation is defined as

min 2x1 + 5x2

s.t. x1 + x2 ≥ 6,

x1 + 2x2 ≤ 18,

x1, x2 ≥ 0.

Example 1.3 (Lagrangian Relaxation) Consider problem (1.2) taking the following form

min f1(x)
s.t. g(x) = 0.

Lecture 1: Introduction 1-4

Then its Lagrangian relaxation is defined as

min f1(x) + λg(x),

where λ ∈ R is any fixed constant.

Example 1.4 Consider problem (1.2) taking the following form

min x1 + x2
s.t. x1 + x2 ≤ 1

x1, x2 ≥ 0.

The following problem is a relaxation of it (it can be considered as a Lagrangian relaxation with λ = 0).

min x1 + x2
s.t. x1, x2 ≥ 0.

Note here that the relaxation is tight.

We say problems (1.2) and (1.3) are equivalent if (1.2) is a relaxation of (1.3) and vice versa. In other words,
given a feasible solution to one problem, we can always construct a feasible solution to the other, with the
same cost. By definition z∗1 = z∗2 , and given an optimal solution to one problem we can construct an optimal
solution to the other.

The second problem in Example 1.4—though being a tight relaxation of the first problem—they are NOT
equivalent by the above definition. The distinction between equivalence and tight relaxation, however, is
usually not important from a practical point of view since in both cases solving one problem we would get
the solution to another.

Example 1.5 Consider problem (1.2) taking the following form

min x1 + x2
s.t. x1 + x2 ≤ 1

x1, x2 ≥ 0.

The following problem is equivalent to it.

min x1 + x2
s.t. x1 + x2 ≤ 1

0 ≤ x1, x2 ≤ 1.

Although the two problems admit different algebraic representations, from a geometric point of view, they are
exactly the same problem.

The following example shows a simple but non-trivial equivalence.

Example 1.6 Consider problem (1.2) taking the following form

min |x|.

The following problem is equivalent to it.

min x2
s.t. x2 ≥ x1

x2 ≥ −x1.

Lecture 1: Introduction 1-5

Given any feasible solution x to the first problem, we can always let x2 = |x|, x1 = x which yields the same
cost. Given any feasible solution (x1, x2) to the second problem, we can always let x = x2 which again yields
the same cost. The problem below, however, is not an equivalent problem.

min x2
s.t. x2 ≤ x1

x2 ≤ −x1.

For example, (x1, x2) = (0,−1) is feasible here with cost −1; yet one cannot find a feasible solution x such
that |x| = −1. One can easily verify that it is not even a relaxation.

The above example also shows that two equivalent problems do not need to be defined in the same space.

1.2 Linear Programming Problems

1.2.1 Standard form problem

A linear programming problem of the form

min cTx
s.t. Ax = b,

x ≥ 0,
(1.4)

is said to be in standard form. Here, A is a matrix of dimensions m× n, i.e.,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,
and b is a vector of dimension m, i.e., bT = (b1, ..., bm). We often use the following two alternative represen-
tations.

• Row representation
min cTx
s.t. aTi x = bi, i = 1, ...,m

x ≥ 0,

where aTi = (ai1, ..., ain).

• Column representation
min cTx
s.t.

∑n
j=1Ajxj = b,

x ≥ 0,

where Aj denotes the j-th column of A, that is,

Aj =


a1j
a2j
...

amj

 .

Lecture 1: Introduction 1-6

The standard form problem is clearly a special case of the more general form introduced in (1.1). In fact,
any linear programming problem can be equivalently transformed into standard form as well.

• Elimination of inequality constraints: Suppose one has an inequality constraint

aTi x ≤ bi.

The above constraint is equivalent to

aTi x+ si = bi, si ≥ 0.

The variable si is called a slack variable. Similarly,

aTi x ≥ bi ⇐⇒ aTi x− si = bi, si ≥ 0.

• Elimination of free variables: Suppose xj is an unrestricted variable. To transform it into equivalent
standard form, we can replace xj by x+j − x

−
j , where x+j and x−j are new variables with constraints

x+j , x
−
j ≥ 0.

• Maximization to minimization: Suppose one is interested in maximizing cTx. Clearly, this is the same
as minimizing −cTx (in terms of solution).

Example 1.7 The problem

min 2x1 + 4x2

s.t. x1 + x2 ≥ 3,

3x1 + 2x2 = 14,

x1 ≥ 0,

is equivalent to the standard form problem

min 2x1 + 4x+2 − 4x−2

s.t. x1 + x+2 − x
−
2 − x3 = 3,

3x1 + 2x+2 − 2x−2 = 14,

x1, x
+
2 , x

−
2 , x3 ≥ 0.

Example 1.8 The problem

max cTx

s.t. Ax ≤ b,
x ≥ 0,

is equivalent to the standard form problem

−min − cTx

s.t. [A I]

[
x
s

]
= b

x, s ≥ 0,

Lecture 1: Introduction 1-7

1.2.2 Applications

Data fitting problem. We are given m data points of the form (ai, bi), i = 1, ...,m, where ai ∈ Rn and
bi ∈ R. We wish to find a linear model of the form b = aTx, where x are the parameters to be determined
to fit those data points as good as possible. Given a fixed parameter vector x, the residual at the i-th data
point is defined as bi − aTi x. An illustration for the problem when n = 1 is given in the figure below.

(ai, bi)

b = xa

|bi – xai|

• Ordinary least squares (l2): This method seeks to minimize the sum of square of residuals, i.e.,

min

m∑
i=1

(bi − aTi x)2.

This problem is clearly nonlinear—it is in fact a quadratic programming problem.

• Least absolute deviations (l1): This method seeks to minimize the sum of absolute value of residuals,
i.e.,

min

m∑
i=1

|bi − aTi x|.

While the problem appears to be a nonlinear problem, it can be “linearized” into a linear programming
problem as we have seen in Example 1.6. In particular, it is equivalent to

min

m∑
i=1

yi

s.t. bi − aTi x ≤ yi, i = 1, ...,m

− bi + aTi x ≤ yi, i = 1, ...,m.

• Chebyshev approximation (l∞): This method seeks to minimize the maximum of absolute residuals,
i.e.,

min max
1≤i≤m

|bi − aTi x|.

Again, the problem can be casted as linear programming problem:

min y

s.t. bi − aTi x ≤ y, i = 1, ...,m

− bi + aTi x ≤ y, i = 1, ...,m.

Lecture 1: Introduction 1-8

The above examples are special cases of either one of the following more general problems:

• Norm approximation: We seek to find an approximate solution x such that Ax ≈ b. This is achieved
by

min ||Ax− b||,
where || · || is a norm on Rm.

• Penalty function approximation: Given the residuals (b1 − aT1 x, ..., bm − aTmx), one seeks to minimize
some cost resulting from the these residuals

min

m∑
i=1

φ(bi − aTi x),

where φ : R→ R is some penalty function that is assumed to be convex and nonnegative.

It would be helpful to compare l1-norm and l2-norm methods above from the following perspective:

• Difficulty in solving corresponding solution;

• Sensitivity to outliers;

• Solution uniqueness.

Compressed sensing. Consider a signal (e.g. sound, images):

xT = (x1, ..., xn),

where n is usually very large. The signal is not directly observable. Instead, one observes a measurement

b = Ax ∈ Rm,

where A is anm×nmatrix andm is small. The problem here is to recover the signal x given the measurements
b.

Clearly, the linear system of equations Ax = b here is underdetermined, and the problem is in general
unsolvable. Consider the following toy example.

Example 1.9 Suppose we have a two-dimensional unknown signal xT = (0, 1). The measurement matrix is

A = [1 2].

From the measurement, the only thing we can observe is b = 2. Clearly, any signal satisfying the equation
x1 + 2x2 = 2 could be a solution.

What if one has prior knowledge that the solution is sparse? Sparsity of the solution x here means that
most of its components are zero. In such case, one wish to solve the following problem

min |{1 ≤ i ≤ n : xi 6= 0}|
s.t. Ax = b,

where |S| in the objective denotes the cardinality of the set S. It is sometimes also called the l0-“norm” of
x1.

The above problem, unfortunately, is computationally intractable (one can reformulate it as an integer
programming problem). Based on idea that if x has a small l0-“norm”, it should have a small lp-norm as
well, we can consider following two approximations:

1Note that, however, it is not a proper norm.

Lecture 1: Introduction 1-9

• l2-norm:

min

m∑
i=1

x2i

s.t. Ax = b.

• l1-norm:

min

m∑
i=1

|xi|

s.t. Ax = b.

It turns out that the l2-norm problem can be a very bad approximation to the l0-“norm” problem. On the
other hand, the l1-norm problem can be quite good, and under certain conditions can be exact as well (see
[CRT06]).

Piecewise linear convex objectives. Let c1, ..., cm be vectors in Rn, let d1, ..., dm be scalars, and consider
the function f : Rn → R defined by

f(x) = max
i=1,...,m

(cTi x+ di).

It can be shown that f(x) is convex using the following more general result.

Proposition 1.10 Let Y be a non-empty set and let g : X × Y → R. Assume that X is a convex set and
g(·, y) is convex for any y ∈ Y. Then,

f(x) = max g(x, y)

s.t. y ∈ Y

is a convex function on X .

Proof: Let x, x̃ ∈ X and λ ∈ [0, 1]. Then,

f(λx+ (1− λ)x̃) = max
y∈Y

g(λx+ (1− λ)x̃, y)

≤ max
y∈Y
{λg(x, y) + (1− λ)g(x̃, y)}

≤ λmax
y∈Y

g(x, y) + (1− λ) max
y∈Y

g(x̃, y)

= λf(x, y) + (1− λ)f(x̃, y).

By letting g(x, i) = cTi x + di, we know from above result that f(x) is convex. A simple example of such
function is f(x) = |x| = max{x,−x}. Now consider the problem

min max
i=1,...,m

(cTi x+ di)

s.t. Ax ≥ b.

This problem can be equivalently formulated as

min y

s.t. y ≥ cTi x+ di, i = 1, ...,m

Ax ≥ b.

Lecture 1: Introduction 1-10

Similarly, the constraint
f(x) ≤ h,

is equivalent to
cTi x+ di ≤ h, i = 1, ...,m.

References

[BT97] Bertsimas, D. and J.N. Tsitsiklis, Introduction to Linear Optimization, Springer, 1997.

[CRT06] Candes, E. J., J. K. Romberg and T. Tao, “Stable signal recovery from incomplete and inaccu-
rate measurements,” Communications on pure and applied mathematics, 59(8), 2006, pp. 1207-
1223.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 2: Geometry of LP
Lecturer: Zhenyu Hu

2.1 Graphical Approach

Consider the following two-dimensional linear programming problem

max 3x1 + 5x2

s.t. x1 ≤ 4,

2x2 ≤ 12,

3x1 + 2x2 ≤ 18,

x1, x2 ≥ 0.

Its feasible set is illustrated in Figure 2.1a.

(a) Feasible region (b) Contour of the objective

Figure 2.1: Two dimensional example

The problem can be graphically solved by examining the contours of the objective Z = 3x1 + 5x2. From
Figure 2.1b, one can see that the optimal solution is (x∗1, x

∗
2) = (2, 6).

The central observation we made when solving this simple problem is that the optimal solution must be some
‘corner point’ of the feasible set, not in the middle. To generalize such observation to more general linear
programs, we need to answer the following two central questions:

• What is a ‘corner point’ and how do we find it?

• Is it true that, in general, we only need to examine these ‘corner points’ to get the solution?

2-1

Lecture 2: Geometry of LP 2-2

2.2 Linear Algebra Background

• We say a vector y is a linear combination of x1, ...,xK if y =
∑K

k=1 akxk for some ak ∈ R, k = 1, ...,K.

• We say a collection of vectors x1, ...,xK ∈ Rn is linearly dependent if there exist real numbers a1, ..., aK ,
not all of them zero, such that

∑K
k=1 akxk = 0. On the other hand, if for any real numbers a1, ..., aK

such that
∑K

k=1 akxk = 0, we have a1 = ... = aK = 0, then x1, ...,xK are linearly independent.

• Let A be a square matrix. If there exists a square matrix B such that

AB = BA = I,

then we say A is invertible or nonsingular. B is called the inverse of A and usually denoted as A−1.

• The determinant of a matrix A can be defined through the Laplace’s formula:

det(A) =
n∑

j=1

(−1)i+jaij det(Mij), det(aij) = aij .

Mij is called a minor of A, which is a submatrix by removing the i-th row and j-th column of A.

Remark 2.1 If all elements in A are integers, is det(A) an integer?

The following result states the equivalency among several fundamental concepts in linear algebra.

Theorem 2.2 Let A be an n× n matrix. Then, the following statements are equivalent:

1. The matrix A is invertible.

2. The determinant of A is nonzero, i.e., |A| 6= 0 or det(A) 6= 0.

3. The rows of A are linearly independent.

4. The columns of A are linearly independent.

5. For any n-dimensional vector b, the linear system Ax = b has a unique solution.

Example 2.3 Consider the system of equations:[
2 4
1 2

] [
x1
x2

]
=

[
40
30

]
.

A nonempty subset S of Rn is called a subspace of Rn if ax+ by ∈ S for any x,y ∈ S and any a, b ∈ R. Note
that any linear combinations of the elements of a subspace S still lies in S. The span of x1, ...,xK defined
by the set of any linear combinations of x1, ...,xK , i.e.,

{y : y =

K∑
k=1

akxk, for any ak ∈ R, k = 1, ...,K}

is a subspace.

A basis of a subspace S with S 6= {0} is a collection of vectors that are linearly independent and whose span
is equal to S and the number of vectors in the basis is called the dimension of the subspace. The set {0} is
also a subspace, and we define its dimension to be 0.

Lecture 2: Geometry of LP 2-3

Example 2.4

• One-dimensional subspaces: lines through the origin;

• Two-dimensional subspace: planes through the origin.

Theorem 2.5 Suppose that the span S of the vectors x1, ...,xK has dimension m. Then:

1. There exists a basis of S consisting of m of the vectors x1, ...,xK .

2. If k ≤ m and x1, ...,xk are linearly independent, we can form a basis of S by starting with x1, ...,xk

and choosing m− k of the vectors xk+1, ...,xK .

Example 2.6 Suppose S is defined by the span of vectors

x1 =

 1
1
0

 ,x2 =

 1
1
1

 ,x3 =

 0
0
1

 .
The dimension of S is 2. Any two vectors among x1,x2,x3 consist a basis for S.

Let A be a matrix of dimensions m × n. The column space of A is the subspace of Rm spanned by the
columns of A and the row space is the subspace of Rn spanned by the rows of A. The dimension of the
column space is always equal to the dimension of the row space and this dimension is called the rank of A,
denoted as rank(A). The set defined by {x ∈ Rn|Ax = 0} is a subspace of Rn and is called the nullspace of
A.

Theorem 2.7 (rank-nullity theorem) The dimension of the nullspace is equal to n − rank(A), where n
is the number of columns of A.

Remark 2.8 Suppose the n× n matrix A is invertible. What is the dimension of the nullspace of A?

2.3 A Geometric Perspective of the Solution

Polyhedron

A polyhedron is a set that can be described in the form {x ∈ Rn|Ax ≥ b}, where A is an m× n matrix and
b is a vector in Rm.

Remark 2.9 The feasible set of a standard form linear programming problem {x ∈ Rn|Ax = b,x ≥ 0} is
also a polyhedron.

Extreme Points and Vertices

Let P be a polyhedron.

Lecture 2: Geometry of LP 2-4

Definition 2.10 A vector x ∈ P is an extreme point of P if we cannot find two vectors y, z ∈ P,y, z 6= x
and λ ∈ [0, 1] such that x = λy + (1 − λ)z. That is, an extreme point cannot be expressed as a convex
combination of any other points in the polyhedron.

Remark 2.11 The definition of extreme points does not refer to any representation of a polyhedron in terms
of linear inequalities.

An alternative concept is called the vertex.

Definition 2.12 A vector x ∈ P is a vertex of P if there exists some c such that c′x < c′y for all y ∈ P
and y 6= x.

In other words, x ∈ P is a vertex of P if there exists c such that x is the unique optimal solution to the
optimization problem

min c′x
s.t. x ∈ P.

Geometrically, this implies P is on one side of the hyperplane {y|c′y = c′x}.

2.4 An Algebraic Perspective of the Solution

The geometric description given above is not easy to verify. Here, we try to describe the extreme point using
the algebraic representation of the polyhedron.

Basic Solution and Basic Feasible Solution

We start from a general description of polyhedron P in Rn:

a′ix ≥ bi, i ∈M1

a′ix ≤ bi, i ∈M2,

a′ix = bi, i ∈M3.

If a vector x∗ satisfies a′ix = bi for some i in M1,M2 or M3, then we say the corresponding constraint is
active or binding at x∗. If there are n constraints active at x∗, then x∗ satisfies a linear system with n
linear equations and n unknowns. If, in addition, these n equations are linearly independent ({ai, i is a
binding constraint} are linearly independent), then x∗ is the unique solution of the system. This leads to
the following definitions of basic solution and basic feasible solution.

Definition 2.13 The vector x∗ ∈ Rn is said to be a basic solution if:

1. All equality constraints are active;

2. Out of all the constraints that are active at x∗, there are n of them that are linearly independent.

In addition, x∗ is said to be a basic feasible solution if it is a basic solution and satisfies all the constraints,
i.e., x∗ ∈ P .

Lecture 2: Geometry of LP 2-5

Remark 2.14 (degeneracy) Note that the definition of basic solution only requires there are n linearly
independent active constraints. While this implies the number of active constraints has to be greater than or
equal to n, in case there are more than n constraints active at a basic solution, we call it a degenerate basic
solution.

Remark 2.15 (adjacency) Two distinct basic solutions are said to be adjacent if we can find n−1 linearly
independent constraints that are active at both of them.

Example 2.16 Let P = {(x1, x2, x3)|x1 +x2 +x3 = 1, x1, x2, x3 ≥ 0}. The figure below gives an illustration
of the polyhedron P . Among the five points A,B,C,D,E which are basic solutions, basic feasible solutions,
degenerate basic solutions respectively?

Example 2.17 Let P = {(x1, x2, x3)|x1 + x2 + x3 ≤ 1, x1 + x2 + x3 ≥ 1, x1, x2, x3 ≥ 0}. The same figure
above describes the polyhedron P . Among the five points A,B,C,D,E which are basic solutions, basic feasible
solutions, degenerate basic solutions respectively?

Remark 2.18 The concept of basic solution and degeneracy are not purely geometric properties. That is,
for the same point in the same polyhedron, it can be a basic solution in one algebraic representation of the
polyhedra and not a basic solution in another. Basic feasible solution, on the other hand, is a pure geometric
property as the following theorem shows, even though its definition relies on a specific representation of the
polyhedron.

Theorem 2.19 Let P be a nonempty polyhedron and let x∗ ∈ P . Then the following are equivalent:

(a) x∗ is a vertex;

(b) x∗ is an extreme point;

(c) x∗ is a basic feasible solution.

Lecture 2: Geometry of LP 2-6

Proof: Without loss of generality, we assume that

P =

{
x ∈ Rn a′ix ≥ bi, i ∈M1

a′ix = bi, i ∈M2.

}
.

(a)⇒(b): Suppose x∗ is a vertex, then by definition there exists c such that for any y, z ∈ P and y 6= x∗, z 6=
x∗, we have c′x∗ < c′y, c′x∗ < c′z. Hence, for any 0 ≤ λ ≤ 1, we have

c′x∗ < c′(λy + (1− λ)z),

and consequently x∗ 6= λy + (1− λ)z. By definition x∗ is an extreme point.

(b)⇒(c): Suppose x∗ is not a basic feasible solution. Let I = {i|a′ix∗ = bi} and consider the matrix A
formed with the rows being a′i, i ∈ I. Since x∗ is not a BFS, one can not find n linearly independent vectors
in the family ai, i ∈ I. As a result, the matrix A has rank less than n and one can find d ∈ Rn,d 6= 0 such
that Ad = 0 or equivalently a′id = 0, i ∈ I. Let ε be a small positive number and y = x∗ + εd, z = x∗ − εd.
We then have a′iy = a′ix

∗ = bi for i ∈ I. In addition, for i /∈ I, we have a′iy = a′ix
∗+εa′id > bi, provided that

ε is chosen to be sufficiently small. Hence, y ∈ P . One can similarly argue that there exists ε sufficiently
small such that z ∈ P . The construction above, however, implies that

x∗ =
y + z

2
,

which implies x∗ is not an extreme point.

(c)⇒(a): Let x∗ be a basic feasible solution and let I = {i|a′ix∗ = bi}. Consider c =
∑

i∈I ai. We then have

c′x∗ =
∑
i∈I

a′ix
∗ =

∑
i∈I

bi.

For any x ∈ P , by feasibility, we know

c′x =
∑
i∈I

a′ix ≥
∑
i∈I

bi.

This shows that x∗ is an optimal solution to the LP

min c′x
s.t. x ∈ P.

To show that it is the unique optimal solution, note that a feasible solution x is optimal if and only if
a′ix = bi for all i ∈ I. From the fact that x∗ is a basic feasible solution, we know that there exist n linearly
independent vectors in {a′i, i ∈ I} which implies that the system of linear equations a′ix = bi, i ∈ I must
have a unique solution. This proves the claim.

Polyhedra in Standard Form

Now we specialize the above definitions to the case of polyhedra in standard form: P = {x ∈ Rn|Ax = b,x ≥ 0},
where A is an m × n matrix. Without loss of generality, we assume that m ≤ n and the m rows of A are
linearly independent.

To get a basic solution, our goal is to find n linear independent constraints. Since equality constraints have
to be satisfied, Ax = b gives m such linear independent constraints. It is sufficient to choose n −m of the
variables xi to be 0 and in the mean time keep the constraints

Ax = b,

xi = 0, i ∈ S, |S| = n−m

Lecture 2: Geometry of LP 2-7

all linearly independent.

The following result summarizes the above characterization and suggests a way of finding the variables xi
that need to be 0.

Theorem 2.20 A vector x ∈ Rn is a basic solution if and only if we have Ax = b, and there exist indices
B(1), ..., B(m) such that:

(a) The columns AB(1), ...,AB(m) are linearly independent;

(b) If i 6= B(1), ..., B(m), then xi = 0.

Proof: “if part”: Suppose for some x such that Ax = b, there exist indices B(1), ..., B(m) such that (a) and
(b) hold. It is then sufficient to show that the system of n constraints

Ax = b,

xi = 0, i 6= B(1), ..., B(m)
(2.1)

are linearly independent. Indeed, given xi = 0 for i 6= B(1), ..., B(m), the equality constraints Ax =∑n
i=1Aixi = b reduces to

m∑
i=1

AB(i)xB(i) = b,

which is a system of m equations with m variables. By property (a), this system of equation has a unique
solution which implies that (2.1) also has a unique solution and hence its constraints are linearly independent.

“only if part”: Suppose now that x is a basic solution. Then there exist indices B(1), ..., B(m) such that
(2.1) is a system of linearly independent equations. This directly establishes property (b). Again, note that
the linear independence of (2.1) implies uniqueness of its solution which in turn implies the uniqueness of
the sub-system

m∑
i=1

AB(i)xB(i) = b.

Hence, the columns AB(1), ...,AB(m) must be linearly independent.

The algebraic characterization of basic solution allows us to find the extreme point (basic feasible solution)
according to the following procedure.

1. Choose m linearly independent columns AB(1), ...,AB(m) from the matrix A.

2. Let xi = 0 if i 6= B(1), ..., B(m).

3. Solve the system of m equations Ax = b for the unknowns xB(1), ..., xB(m).

4. If xi, 1 ≤ i ≤ n are all non-negative (satisfying the constraints x ≥ 0), then we have found a basic
feasible solution. Otherwise, repeat step 1 with another set of m linearly independent columns.

We call xB(1), ..., xB(m) in a basic solution x the basic variables (the remaining are nonbasic). The columns
AB(1), ...,AB(m) are called the basic columns and they form a basis of Rm. We denote the submatrix of A
formed by putting all the basic columns together as

B =
[

AB(1) AB(2) ... AB(m)

]
,

Lecture 2: Geometry of LP 2-8

called the basis matrix and the basic variables

xB =

 xB(1)

...
xB(m)

 ,
can be solved as xB = B−1b.

What if some of the xB(j), 1 ≤ j ≤ m happens to be 0? Recall the definition of degenerate basic solution.
For a standard form problem, a basic solution x is called degenerate if more than n−m of the components
of x are zero.

Example 2.21 Let the constraint Ax = b be of the form
1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1

x =


8
12
4
6

 .
Clearly, A4,A5,A6,A7 are linearly independent and can serve as basic columns. It is easy to obtain that
the resulting basic solution is x = (0, 0, 0, 8, 12, 4, 6) and this is a basic feasible solution.

The columns A3,A5,A6,A7 are also linearly independent and lead to basic columns. The resulting basic
solution is x = (0, 0, 4, 0,−12, 4, 6), which is not feasible.

What if we choose A1,A2,A3,A7 as basic columns (they are also linearly independent)? We then have
x4 = x5 = x6 = 0 and the system 

1 1 2 0
0 1 6 0
1 0 0 0
0 1 0 1



x1
x2
x3
x7

 =


8
12
4
6

 .
We can solve (x1, x2, x3, x7) = (4, 0, 2, 6) and x = (4, 0, 2, 0, 0, 0, 6). This is a degenerate basic feasible
solution.

If we replace the basic column A2 by column A4, it can be verified that A1,A3,A4,A7 are still basic columns
and the corresponding basic solution is still x = (4, 0, 2, 0, 0, 0, 6).

Recall the procedure in finding the basic feasible solution. Whenever we change the basic columns, we want
to change the basic solution (to a new solution). However, the bad thing about degeneracy is that we might
get stuck at the same solution (think about the geometric intuition).

In standard form, two distinct basic solutions are adjacent if their basis are adjacent—they share all but
one basic column. Yet, adjacent basis not necessarily lead to adjacent basic solutions. In the above ex-
ample, {A4,A5,A6,A7} and {A3,A5,A6,A7} are adjacent basis and the corresponding basic solutions
x = (0, 0, 0, 8, 12, 4, 6) and x = (0, 0, 4, 0,−12, 4, 6) are adjacent. On the other hand, {A1,A2,A3,A7} and
{A1,A3,A4,A7} are also adjacent, they lead to the same basic solution.

Example 2.22 Consider the standard form polyhedron:

P = {(x1, x2, x3)|x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1, x2, x3 ≥ 0}

What are the basic feasible solutions? Which one is degenerate?

Lecture 2: Geometry of LP 2-9

Now consider the following polyhedron, which is not in standard form.

P = {(x1, x2, x3)|x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1, x3 ≥ 0}

What are the basic feasible solutions? Which one is degenerate?

2.5 Existence and Optimality of Extreme Point

Given a polyhedron P , does an extreme point always exist? Consider, for example, the polyhedron

P = {x ∈ Rn|Ax ≥ b}.

What if the number of rows of A is less than n?

Theorem 2.23 Suppose that the polyhedron P = {x ∈ Rn|Ax ≥ b} is nonempty. Then P has at least one
extreme point if and only if P does not contain a line, that is, there does not exist x ∈ P and d ∈ Rn,d 6= 0
such that x + λd ∈ P for any λ ∈ R.

Proof: “if part”: For any x ∈ P , let I = {i|a′ix = bi}. If there exist n linearly independent vectors in
ai, i ∈ I, then by definition x is an extreme point and we are done. Otherwise the rank for the vectors
ai, i ∈ I must be less than n, and there exists d such that a′id = 0 for any i ∈ I. We can construct a line by

y = x + λd.

Note that for any point on the line and any i ∈ I, we have a′i(x + λd) = a′ix = bi. On the other hand,
since P does not contain a line, when we change λ, there must exist some j /∈ I, such that the constraint
a′j(x + λd) ≥ bj is violated. In other words, there exists j /∈ I and λ∗ such that x + λ∗d ∈ P and
a′j(x + λ∗d) = bj .

Furthermore, aj is not a linear combination of ai, i ∈ I since if aj =
∑

i∈I αiai, we then have a′jd =∑
i∈I αia

′
id = 0. However, from a′j(x + λ∗d) = bj , we know a′jd cannot be zero since a′jx > bj by j /∈ I. As

a result, we have reached a new point x + λ∗d ∈ P , for which the rank of the binding constraints increased
by one.

The above argument can be repeated until we have reached a point whose binding constraints has rank n,
i.e., n linearly independent binding constraints—implying the existence of an extreme point.

“only if part”: Suppose x is an extreme point, then there exists n linearly independent binding constraints,
say, a1, ...,an. If P contains a line, say, x + λd ∈ P for some d 6= 0 and for any λ ∈ R. By definition of P ,
we have

a′i(x + λd) ≥ bi, i = 1, ..., n.

The above inequality implies a′id = 0 since if a′id > 0, then as λ → −∞, the inequality must be violated
(similar argument applies to a′id < 0). Yet, linear independence of a1, ...,an implies d = 0, leading to a
contradiction.

Note that a polyhedron in standard form does not contain a line and therefore has at least one extreme
point.

Now we turn to the central question: can we always find an optimal solution within the set of extreme points
of the feasible set? The following theorem provides an affirmative answer.

Lecture 2: Geometry of LP 2-10

Theorem 2.24 Consider the linear programming problem of minimizing c′x over a polyhedron P . Suppose
that P has at least one extreme point and there exists an optimal solution. Then, there exists an optimal
solution which is an extreme point of P .

Proof: Let P be of the form P = {x ∈ Rn|Ax ≥ b}, Q be the set of optimal solutions and v be the optimal
value. Then Q can be represented as

Q = {x ∈ Rn|Ax ≥ b, c′x = v}.

Note that Q ⊂ P is a polyhedron and has at least one extreme point (why?). Let x∗ be an extreme point of
Q. What remains is to show that x∗ is also an extreme point of P .

We prove by contradiction. Suppose x∗ is not an extreme point of P , then there exists y, z ∈ P,y, z 6= x and
λ ∈ [0, 1] such that x = λy + (1− λ)z. It follows that v = c′x = λc′y + (1− λ)c′z. Since v is the minimum
cost, we must have c′y ≥ v and c′z ≥ v. Thus, the only way for λc′y + (1 − λ)c′z = v is c′y = c′z = v,
which implies y, z ∈ Q. However, this contradicts with the fact that x∗ is an extreme point in Q.

In fact, we have a stronger claim that an extreme point is an optimal solution as long as the optimal cost is
finite.

Theorem 2.25 Consider the linear programming problem of minimizing c′x over a polyhedron P . Suppose
that P has at least one extreme point. Then, either the optimal cost is equal to −∞, or there exists an
extreme point which is optimal.

Proof: We assume that the optimal cost is finite and let P be of the form P = {x ∈ Rn|Ax ≥ b}. Given
any x ∈ P , let I = {i|a′ix = bi}. Suppose that the rank of ai, i ∈ I is less than n, i.e., x is not an extreme
point. We show in the following that one can always an extreme point such that it yields a cost at most c′x.

The rank of ai, i ∈ I being less than n implies we can find d such that a′id = 0 for every i ∈ I. In addition,
by appropriately choosing the sign for di, we can always make c′d ≤ 0 without affecting the constraints
a′id = 0 for i ∈ I.

Suppose we can find d such that c′d < 0. Let y = x + λd, where λ is positive. Note that c′(x + λd) < c′x.
If the half-line is contained in P , then the optimal cost can be decreased all the way to −∞. Otherwise, as
shown before, one can find λ∗ and j /∈ I such that a′i(x + λ∗d) = bj with x + λ∗d ∈ P and the rank of its
binding constraints increased by one.

Suppose that c′d = 0. We can then consider the line y = x + λd, with λ ∈ R. Since an extreme point exists,
P does not contain a line, and we can find some y such that the rank of its binding constrains is increased
by one.

In either case, we have found a new point y, whose binding constraints have higher rank than x and c′y ≤ c′x.
Repeating the process, we can then find an extreme point w such that c′w ≤ c′x.

Note that for general optimization problems, a finite optimal cost does not necessarily imply the existence
of optimal solution as shown by the following example.

min 1/x

s.t. x ≥ 1.

References

[BT97] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Springer, 1997.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 3: Simplex Method
Lecturer: Zhenyu Hu

A general idea in many optimization algorithms is as follows:

• Find a feasible solution.

• Search its neighborhood to find a nearby feasible solution with lower cost.

• If no nearby feasible solution leads to lower cost, then the algorithm terminates and we have a local
optimal solution.

For linear programming problems, we have seen in the lecture “Geometry of Linear Program” that a basic
feasible solution is an ideal feasible solution to start with and when considering a neighborhood, it is sufficient
to consider the nearby basic feasible solutions. In addition, for linear programming problems, local optimal
solution is always a global optimal solution. The only remaining question is how to go from one basic feasible
solution to another one.

In the following, we consider the standard form problem

min c′x

s.t. Ax = b,

x ≥ 0.

We let P denote the corresponding feasible set and we assume that the rows of A are linear independent.

3.1 Searching Direction and Optimality Condition

Suppose we are sitting at x ∈ P and we are considering moving away from x along the direction of d ∈ Rn.
We should move along the direction that satisfies the following considerations:

• It does not immediately lead us outside of P , i.e., it leads to a feasible solution.

• It is an edge of P .

• Along the direction, the cost is reduced.

For feasibility, we need the following definition.

Definition 3.1 A vector d ∈ Rn is said to be a feasible direction at x, if there exists a positive scalar θ for
which x + θd ∈ P .

As we mentioned, x is usually taken as a basic feasible solution with B(1), ..., B(m) be the indices of the
basic variables and

B =
[

AB(1) AB(2) ... AB(m)

]
,

3-1

Lecture 3: Simplex Method 3-2

being the basis matrix. We know that the basic variables in x are xB = B−1b and the non-basic variables
are all 0. In addition, for adjacent BFS, they share all but one basic column.

To move to an adjacent BFS, the direction d must be of the form dj = 1 and di = 0 for some nonbasic index
j and every nonbasic index i other than j. Feasibility further indicates A(x + θd) = b and x + θd ≥ 0 for
some θ > 0.

For equality constraints, we have A(x + θd) = b = Ax + θAd = b + θAd = b. That is, we require Ad = 0.
It follows that

Ad =

n∑
i=1

Aidi =

m∑
i=1

AB(i)dB(i) + Aj = BdB + Aj = 0,

where dB = (dB(1), ..., dB(m)) and we can obtain

dB = −B−1Aj .

For non-negativity constraints, if x is a non-degenerate basic feasible solution, we then have xB > 0. This
implies xB + θdB ≥ 0 for sufficiently small θ. For nonbasic variables, we know that xj + θdj = θ ≥ 0 and
xi + θdi = xi = 0 for all i 6= j. That is, x + θd ≥ 0 hold for θ small. What if x is degenerate?

Finally, we want a direction that reduces the cost. In other words, we want to compare c′x and c′x + θc′d.
The rate of cost change (difference divide by θ) along this direction is

c′d = c′BdB + cj = cj − c′BB−1Aj ,

where c′B = (cB(1), ..., cB(m)). The above quantity is called the reduced cost of the variable xj and we denote
it as c̄j = cj − c′BB−1Aj .

Example 3.2 Consider the linear programming problem

min 2x1 + 2x2 + x3 + x4

s.t.
x1+ x2+ x3+ x4 = 2
2x1+ 3x3+ 4x4 = 2

x1, x2, x3, x4 ≥ 0.

Clearly, A1 = (1, 2),A2 = (1, 0) are linearly independent and can serve as basic columns. It is easy to obtain
that the resulting basic solution is x = (1, 1, 0, 0) and this is a basic feasible solution.

To obtain a searching direction, we let d3 = 1 and d4 = 0. Then the direction of change of the basic variables
is [

d1
d2

]
= dB = −B−1A3 = −

[
0 1/2
1 −1/2

] [
1
3

]
=

[
−3/2
1/2

]
The reduced cost is then

c̄3 = c3 − [c1, c2]B−1A3 = 1 + [2, 2]

[
−3/2
1/2

]
= −1.

We can also directly verify this. Note that c′x = 4. The new solution we find by moving one unit along
the direction d is x + d = (−1/2, 3/2, 1, 0). One can check that c′(x + d) = 3. The cost is reduced by 1.
Unfortunately, the new solution we find (−1/2, 3/2, 1, 0) is not feasible because we have went too far along
the direction d.

The optimality condition for LP is then summarized in the following theorem.

Lecture 3: Simplex Method 3-3

Theorem 3.3 Consider a BFS x associated with a basis matrix B, and let c̄ be the corresponding vector of
reduced costs.

(a) If c̄ ≥ 0, then x is optimal.

(b) If x is optimal and nondegenerate, then c̄ ≥ 0.

Proof: (a) Let y be any feasible solution, and let d = y − x. By feasibility of x,y, we have Ad = A(y − x) = 0,
which is equivalent as

BdB +
∑
i∈N

Aidi = 0,

where N is the set of nonbasic indices. It follows that dB = −
∑

i∈N B−1Aidi, and

c′d = c′BdB +
∑
i∈N

cidi =
∑
i∈N

(ci − c′BB−1Ai)di =
∑
i∈N

c̄idi.

Note that for i ∈ N , we have xi = 0, and hence di = yi ≥ 0, and by c̄i ≥ 0, we have c′d ≥ 0.

(b) Suppose on the contrary, c̄j < 0. Then j must correspond to a nonbasic variable. The nondegeneracy of
x implies we can find a θ > 0 and d with dj = 1, di = 0 for any nonbasic index i, i 6= j such that x + θd is
feasible. In addition, the reduced cost implies the cost reduces by θc̄j by moving along the direction d.

Following the above theorem, any basis matrix B is called optimal if (a) B−1b ≥ 0 and (b) c̄ ≥ 0.

3.2 Simplex Method

Following the Example 3.2, suppose we have computed the reduced cost c̄j is negative for the nonbasic
variable xj (in the above example, it is x3). The reduced cost tells us it is better to make xj positive and
we call this situation that we want to bring xj into the basis or xj should enter the basis. The question now
is how positive should xj be or in other words, how far shall we go along the direction d. We have seen in
the above example that if we go too far, x + θd will become infeasible. On the other hand, the cost reduced
by x + θd is θc̄j , which means the larger θ is the better. This takes us to the point x + θ∗d, where

θ∗ = max{θ ≥ 0|x + θd ∈ P}.

Recall that d is chosen such that Ad = 0. Thus, the equality constraints A(x + θd) = b will always be
satisfied for any θ ≥ 0. We only need to worry about the non-negativity constraints. There are two cases:

1. If d ≥ 0, then x + θd ≥ 0 for any θ ≥ 0. It is optimal to choose θ∗ =∞.

2. If di < 0 for some i, the constraint xi + θdi ≥ 0 becomes θ ≤ −xi/di. Thus,

θ∗ = min
{i|di<0}

(
−xi
di

)
.

Remark 3.4 Note that if xi is a nonbasic variable, then either di = 1 or di = 0. Thus, it is sufficient to
consider the basic variables when finding θ∗, i.e.,

θ∗ = min
{i=1,...,m|dB(i)<0}

(
−
xB(i)

dB(i)

)
.

Lecture 3: Simplex Method 3-4

If x is a non-degenerate basic feasible solution, then xB(i) > 0 for all i = 1, ...,m which implies θ∗ > 0. This
means that we are guaranteed to move to a new point. On the other hand, if for some i = 1, ...,m, it happens
that dB(i) < 0 and xB(i) = 0—in which case x is degenerate, then θ∗ = 0 and we are stuck at the same point.

Example 3.5 We continue with Example 3.2. We can compute x + θd as (1− 3
2θ, 1 + 1

2θ, θ, 0). Clearly, for
x + θd ≥ 0, we only need 1− 3

2θ ≥ 0. That is, θ∗ = 2
3 and x + θ∗d = (0, 43 ,

2
3 , 0).

Note that the point (0, 43 ,
2
3 , 0) is another basic feasible solution with the corresponding basic columns being

A2 = (1, 0) and A3 = (1, 3). Thus, we have successfully moved from one basic feasible solution to another
one while reducing the cost.

We now formalize the observation made in Example 3.5. We assume x is non-degenerate. Suppose l is the
index that solves

min
{i=1,...,m|dB(i)<0}

(
−
xB(i)

dB(i)

)
.

In other words,

−
xB(l)

dB(l)
= min
{i=1,...,m|dB(i)<0}

(
−
xB(i)

dB(i)

)
= θ∗.

Rearranging the terms above, we have xB(l) + θ∗dB(l) = 0. In summary, in moving from x to x + θ∗d, the
nonbasic variable xj = 0 becomes xj + θ∗ > 0 while the basic variable xB(l) > 0 becomes xB(l) + θ∗dB(l) = 0.
We call this situation as xj replaces xB(l) in the basis. Accordingly, the old basis matrix B is replaced by

the new matrix B by changing the basic columns AB(l) by Aj , i.e.,

B =
[

AB(1) ... AB(l−1) Aj AB(l+1) ... AB(m)

]
.

The following result confirms our observation in Example 3.5.

Theorem 3.6

(a) B is a basis matrix. That is, the m columns AB(1), ...,AB(l−1),Aj ,AB(l+1), ...,AB(m) are linearly
independent.

(b) x + θ∗d is a basic feasible solution.

Proof: (a) Suppose, on the contrary that AB(i), i = 1, ...,m are linearly dependent. Then, there exist

λi, i = 1, ...,m not all zero, such that
∑m

i=1 λiAB(i) = 0, which implies

m∑
i=1

λiB
−1AB(i) = 0,

i.e., the vectors B−1AB(i), i = 1, ...,m are also linearly dependent.

On the other hand, for i 6= l, we have

B−1AB(i) = B−1AB(i) = ei

and for i = l, we have
B−1AB(l) = B−1Aj = −dB.

By definition of the index l, dB(l) < 0 is nonzero and hence−dB cannot be represented as a linear combination
of ei, i = 1, ...,m, i 6= l. Therefore, B−1AB(i), i = 1, ...,m are linearly independent, a contradiction.

Lecture 3: Simplex Method 3-5

(b) By construction, the vector y = x+θ∗d satisfies yi = 0 for i 6= B̄(1), ...B̄(m). The linearly independence
of AB(i) then uniquely determines y as the basic solution corresponding to the basis matrix B̄. It is clearly
feasible by our construction.

We now summarize one iteration in the simplex method, called a pivot.

An iteration of the simplex method

1. We start with a basic feasible solution x (assuming non-degenerate) with the basic matrix

B =
[

AB(1) AB(2) ... AB(m)

]
,

2. Compute the reduced costs c̄j = cj − c′BB−1Aj for all nonbasic indices j. If they are all nonnegative,
the current basic feasible solution is optimal, and the algorithm terminates; else, choose some j for
which c̄j < 0.

3. Compute the search direction d associated with xj : dj = 1, di = 0 for all nonbasic indices i 6= j and

dB = −B−1Aj .

If d ≥ 0 (dB ≥ 0), then θ∗ =∞, optimal cost is −∞, and the algorithm terminates.

4. If some component of d is negative, let

θ∗ = min
{i|di<0}

(
−xi
di

)
.

5. Let l be such that θ∗ = −xB(l)

dB(l)
. We arrive at the new basic feasible solution x + θ∗d and the corre-

sponding new basis: B. We are back to the situation in Step 1.

Remark 3.7 At each iteration or pivot, if the algorithm does not terminate (either arriving at optimal
solution or optimal cost is −∞), we are guaranteed to move to a new basic feasible solution while reducing
the cost. Since there are finite number of basic feasible solutions, the algorithm must terminate in finite
number of iterations.

Issue with degeneracy

The degeneracy will only cause a problem if for some dB(l) < 0, we have xB(l) = 0. In this case, we may
nevertheless proceed to replace xB(l) by xj in the basis. This is worthwhile since now we have a new direction
dB(l) = 1 to explore.

With degeneracy, it is also possible that after multiple pivoting without any cost reduction, one is back to
the initial basis—which is called cycling. There are rules to avoid such cycling phenomenon, and simplex
method is guaranteed to terminate in finite number of iterations under such rules (see Section 3.4 in [BT97]).

3.3 Full Tableau Implementation

We have seen in the above summary that in Step 2 and Step 3, we need B−1 in order to compute the
corresponding reduced cost and search direction respectively. The information of B is not directly used in
the computation. This suggests that instead of performing the naive computations

B→ B−1 → B→ B
−1
,

Lecture 3: Simplex Method 3-6

we can update only the information that can be directly used:

B−1 → B
−1
.

The full tableau implementation of the simplex method is based on this idea and updates the following big
table at each iteration: We explain each term in detail below:

−c′BB−1b c′ − c′BB−1A
B−1b B−1A

• −c′BB−1b: Recall that the basic variable is given by xB = B−1b. Thus, the cost at x is given by

c′x = c′BxB = c′BB−1b,

which implies −c′BB−1b is the negative of the current cost.

• c′ − c′BB−1A: This is a row vector of length n. It’s j-th component is given by cj − c′BB−1Aj , which
is the reduced cost along direction j.

• B−1b: As we mentioned above, this is simply the value of basic variables: xB .

• B−1A: We use the following special case of A to illustrate this term. Recall that A is an m×n matrix
and if we write column-wise:

A =
[

A1 A2 ... An

]
.

Among the n columns, m are basic columns associated with x and they form a basis matrix B. We
assume that the m basic columns are the last m columns of A. Then A can be written as

A =
[

A1 A2 ... An−m B
]
.

B−1A is then simply

B−1A =
[

B−1A1 B−1A2 ... B−1An−m I
]
.

Now, for each nonbasic indices 1 ≤ j ≤ n − m, B−1Aj is the negative of dB associated with the
nonbasic variable xj .

In summary, the tableau can be alternatively written as:

−c′x c̄1 ... c̄n
xB B−1A1 ... B−1An

To update the tableau, we summarize the steps as follows:

An iteration of the full tableau implementation

1. We start with a tableau

−c′x c̄1 ... c̄n
xB B−1A1 ... B−1An

Lecture 3: Simplex Method 3-7

2. If c̄i are all nonnegative, the current basic feasible solution is optimal, and the algorithm terminates;
else, choose some j for which c̄j < 0.

3. Check the j-th column B−1Aj . We call this column the pivot column. If B−1Aj ≤ 0 (i.e., dB ≥ 0),
then the optimal cost is −∞, and the algorithm terminates.

4. If some component of B−1Aj is positive, let ui be the i-th component of B−1Aj (which is simply −di).
Compute xB(i)/ui. Let l be the index such that

xB(l)/ul = min
{i|ui>0}

(
xi
ui

)
= min
{i|di<0}

(
−xi
di

)
.

The l-th row is called the pivot row.

5. Add to each row of the tableau a constant multiple of the l-th row so that the j-th column[
c̄j

B−1Aj

]
becomes [

0
el

]
.

The row operations are equivalent as constructing a matrix such that[
1 ke′l
0 Q

] [
c̄j

B−1Aj

]
=

[
0
el

]
,

where the vector [1 ke′l] represents row operations that makes the zeroth row c̄j to 0 and Q represents
row operations that make B−1Aj to el.

For such an iteration to achieve what we want, the key step is Step 5: we need to show that after a sequence
of row operations, we can indeed update the tableau as[

−c′BB−1b c′ − c′BB−1A
B−1b B−1A

]
→

[
−c′

B
B
−1

b c′ − c′
B

B
−1

A

B
−1

b B
−1

A

]
,

or equivalently[
−c′

B
B
−1

b c′ − c′
B

B
−1

A

B
−1

b B
−1

A

]
=

[
1 ke′l
0 Q

] [
−c′BB−1b c′ − c′BB−1A

B−1b B−1A

]
.

To see this is true, note that

QB−1B = QB−1
[

AB(1) ... AB(l−1) Aj AB(l+1) ... AB(m)

]
= Q

[
e1 ... el−1 B−1Aj el+1 ... em

]
= I.

Therefore, QB−1 = B
−1

. This establishes equations from rows 1 to m.

To see the zeroth row, it is sufficient to show that c′BB−1 − ke′lB−1 = c′
B

B
−1

. Let p′ = c′BB−1 − ke′lB−1.

For the pivoting column j, we clearly have cj − p′Aj = cj − c′BB−1Aj + ke′lB
−1Aj = 0. For basic columns

B(i), i 6= l, we have cB(i) − p′AB(i) = cB(i) − c′BB−1AB(i) + ke′lB
−1AB(i) = c̄B(i) + ke′lei = 0. That is,

c′
B
− p′B = 0′,

and we indeed have p′ = c′BB−1 − ke′lB−1 = c′
B

B
−1

.

Lecture 3: Simplex Method 3-8

Example 3.8 Consider the linear programming problem

min − 10x1 − 12x2 − 12x3

s.t.
x1+ x2+ 2x3 ≤ 20
2x1+ x2+ 2x3 ≤ 20
2x1+ 2x2+ x3 ≤ 20

x1, x2, x3 ≥ 0.

The problem can be reformulated into the standard form by introducing slack variables x4, x5, x6:

min − 10x1 − 12x2 − 12x3

s.t.
x1+ x2+ 2x3+ x4 = 20
2x1+ x2+ 2x3+ x5 = 20
2x1+ 2x2+ x3+ x6 = 20

x1, ..., x6 ≥ 0.

Clearly, x = (0, 0, 0, 20, 20, 20) is a basic feasible solution. The corresponding basis matrix is

B = B−1 =

 1 0 0
0 1 0
0 0 1

 ,
and cB = 0. Thus, c′BxB = 0 and c′ − c′BB−1A = c′. The initial tableau is: Since the reduced cost of x1

x1 x2 x3 x4 x5 x6
0 −10 −12 −12 0 0 0
20 1 2 2 1 0 0
20 2∗ 1 2 0 1 0
20 2 2 1 0 0 1

is negative, we let it enter the basis. The pivot column is (u1, u2, u3) = (1, 2, 2) and the ratios xi/ui can be
computed easily. We find that the smallest ratio is 10 and we can choose l = 2 (corresponds to x5). The
pivot element, the intersection of pivot column and pivot row, is indicated by asterisk. The next step is to
change the pivot column to the vector (0, 0, 1, 0), which is done below:

x1 x2 x3 x4 x5 x6
100 0 −7 −2 0 5 0
10 0 1.5 1∗ 1 −0.5 0
10 1 0.5 1 0 0.5 0
0 0 1 −1 0 −1 1

We have moved to the new basic feasible solution: x = (10, 0, 0, 10, 0, 0). Again, the reduced cost of, say,
x3 is negative, and by computing the ratio, we can determine the first row as the pivot row. Continuing
iterations, we get Since all the reduced costs in the last tableau are now nonnegative, we have arrived at an
optimal solution which is x = (4, 4, 4, 0, 0, 0).

3.4 Finding Initial BFS

The task is easy when
P = {x|Ax ≤ b,x ≥ 0}.

Lecture 3: Simplex Method 3-9

x1 x2 x3 x4 x5 x6
120 0 −4 0 2 4 0
10 0 1.5 1 1 −0.5 0
0 1 −1 0 −1 1 0
10 0 2.5∗ 0 1 −1.5 1

x1 x2 x3 x4 x5 x6
136 0 0 0 3.6 1.6 1.6
4 0 0 1 0.4 0.4 −0.6
4 1 0 0 −0.6 0.4 0.4
4 0 1 0 0.4 −0.6 0.4

For standard form problem

min c′x

s.t. Ax = b,

x ≥ 0,

one can use the following so-called big-M method. We assume without loss of generality that b ≥ 0. In the
big-M method, we solve instead for the problem

min c′x +M

m∑
i=1

yi

s.t. Ax + y = b,

x,y ≥ 0,

where M is a large positive number. In this case, the solution

x = 0,y = b

is a basic feasible solution. If the original problem has finite optimal cost, then the optimal solution to the
modified problem (x∗,y∗) must satisfy y∗ = 0 and x∗ is the optimal solution to the original problem.

References

[BT97] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Springer, 1997.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 4: Duality Theory
Lecturer: Zhenyu Hu

4.1 Method of Lagrangian Relaxation

Motivating Example

The duality theory is intimately related with the Lagrangian relaxation method, which is commonly used
to solve difficult constrained optimization problems. To motivate, let’s consider the following nonlinear
optimization problem:

min x2 + y2

s.t. x + y = 1.
(4.1)

One common way of solving such constrained problems is to relax the constraints and consider the following
unconstrained problem

min x2 + y2 + p(1− x− y), (4.2)

where p is an arbitrary constant. We call p the Lagrangian multiplier and the function L(x, y, p) = x2 +y2 +
p(1− x− y) the Lagrangian.

We make following observations regarding the two problems:

• For any p, the optimal value of problem (4.2) provides a lower bound to the optimal value of problem
(4.1);

• If p > 0, it penalizes the case when x + y < 1; If p < 0, it penalizes the case when x + y > 1.

For this particular example, we can solve the unconstrained problem easily by first order conditions:

∂L

∂x
= 2x− p = 0,

∂L

∂y
= 2y − p = 0,

which results in x = y = p
2 and an optimal value

g(p) = p− p2

2
.

Since for each p, g(p) is a lower abound on the optimal value of problem (4.1), we want this lower bound a
be as tight as possible. This leads to the following problem:

max g(p),

whose solution is p∗ = 1. The corresponding solution to the relaxed problem (4.2) when p = 1 is then
x∗ = y∗ = 1

2 . This is indeed a feasible and optimal solution to the original constrained problem (4.1).

4-1

Lecture 4: Duality Theory 4-2

Standard Form Linear Programming Problems

Let us apply this idea to the linear programming problem in standard form

min c′x

s.t. Ax = b

x ≥ 0,

which we call primal problem. We assume that the primal admits a solution x∗ and consequently its optimal
value is c′x∗. The relaxed problem is then defined by replacing the constraint Ax = b with the penalty
p′(b−Ax), i.e., we associate a penalty or Lagrangian multiplier pi to each constraint a′ix = bi, i = 1, ...,m:

g(p) = min c′x + p′(b−Ax)

s.t. x ≥ 0.

Again, we have g(p) ≤ c′x∗ and we want to find a penalty such that this lower bound is as tight as possible:

max g(p).

We call this problem as the dual problem.

The relaxed problem can be solved easily. We can rewrite g(p) as

g(p) = p′b + min
x≥0

(c′ − pA)x.

Note that

min
x≥0

(c′ − pA)x =

{
0, if c′ − p′A ≥ 0′,

−∞, otherwise.

If we want to maximize g(p), then we want to enforce c′ − p′A ≥ 0′. The dual problem can then be expressed
as

max p′b

s.t. p′A ≤ c′,

which is another linear programming problem with decision variables p = (p1, ..., pm).

Variants

1. What if we have inequality constraints Ax ≥ b instead of equality constraints Ax = b? Intuitively
speaking, in the case of inequality constraints, we only want to put a penalty pi(bi−a′ix) when a′ix < bi
for some i. This is achieved by restricting pi ≥ 0, since pi(bi−a′ix) ≥ 0 when a′ix < bi (a penalty cost)
while pi(bi − a′ix) ≤ 0 when a′ix ≥ bi (no penalty, even reward).

Equivalently, we can transform the problem into standard form: Ax− s = b, s ≥ 0 or[
A −I

] [x
s

]
= b.

The dual constraints are then
p′
[
A −I

]
≤
[
c′ 0′

]
,

or simply
p′A ≤ c′, p ≥ 0.

Lecture 4: Duality Theory 4-3

2. What if x is unconstrained? The relaxed problem becomes

g(p) = p′b + min
x

(c′ − pA)x,

where

min
x

(c′ − pA)x =

{
0, if c′ − p′A = 0′,

−∞, otherwise.

Thus, we end up with the constraint p′A = c′ in the dual problem.

In general, if we have the primal of the following form,

min c′x

s.t. a′ix ≥ bi, i ∈M1

a′ix ≤ bi, i ∈M2,

a′ix = bi, i ∈M3,

xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2,

xj free, j ∈ N3,

the dual is then given by

max p′b

s.t. pi ≥ 0, i ∈M1,

pi ≤ 0, i ∈M2,

pi free, i ∈M3,

p′Aj ≤ cj , j ∈ N1

p′Aj ≥ cj , j ∈ N2

p′Aj = cj , j ∈ N3

Remark 4.1 We observe here that the quantities defined by ui = pi(a
′
ix − bi) and vj = (cj − p′Aj)xj are

always nonnegative, i.e., ui, vj ≥ 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 4.2 Consider the primal problem

min x1 + 2x2 + 3x3

s.t.
−x1+ 3x2 = 5
2x1− x2+ 3x3 ≥ 6

x3 ≤ 4

x1 ≥ 0

x2 ≤ 0

x3 free

Lecture 4: Duality Theory 4-4

Its dual is

max 5p1 + 6p2 + 4p3

s.t. p1 free

p2 ≥ 0

p3 ≤ 0

−p1+ 2p2+ ≤ 1
3p1− p2+ ≥ 2

3p2+ p3 = 3

What is the dual of the dual? We first transform it into the form of primal:

−min − 5x1 − 6x2 − 4x3

s.t. x1 free

x2 ≥ 0

x3 ≤ 0

x1− 2x2+ ≥ −1
−3x1+ x2+ ≤ −2

−3x2 −x3 = −3

The dual of this problem can then be found according to our general formulation as

−max − p1 − 2p2 − 3p3

s.t.
p1− 3p2+ = −5
2p1+ p2− 3p3 ≤ −6

−p3 ≥ −4

p1 ≥ 0

p2 ≤ 0

p3 free

This is the same problem as the primal we started with. We usually state this property as the dual of the
dual is the primal.

4.2 Duality Theory

We have mentioned above for the standard form linear programming problems, if the optimal solution to
the primal x∗ exists, then g(p) ≤ c′x∗. This is true in general.

Theorem 4.3 (Weak Duality) If x is a feasible solution to the primal problem and p is a feasible solution
to the dual problem, then

p′b ≤ c′x.

In particular, when x∗ exists this implies g(p) ≤ c′x∗.

Proof: Recall the quantities ui, vj . Notice that

m∑
i=1

ui = p′(Ax− b) ≥ 0

Lecture 4: Duality Theory 4-5

and
n∑

j=1

vj = (c′ − p′A)x ≥ 0.

We then have
m∑
i=1

ui +

n∑
j=1

vj = c′x− p′b ≥ 0.

That is,
p′b ≤ c′x.

Weak duality theorem immediately implies:

• If the optimal cost in the primal is −∞, then the dual problem must be infeasible;

• If the optimal cost in the dual is +∞, then the primal problem must be infeasible;

• Let x and p be the feasible solutions to the primal and the dual. If p′b = c′x, then x and p are
optimal solutions to the primal and the dual, respectively.

Theorem 4.4 (Strong Duality) If a linear programming problem has an optimal solution, then its dual
also has a solution and the respective optimal costs are equal.

Proof: Consider the standard form problem

min c′x

s.t. Ax = b,

x ≥ 0.

For simplicity, we assume the rows of A are linear independent and there exists an optimal solution. Let
us apply the simplex method to this problem. We have shown that when the basic feasible solutions are
non-degenerate then the simplex method terminates. (In the case when there are degenerate basic feasible
solutions, by using specific pivoting rule the simplex method can still terminate.) Let the simplex method
terminates at the solution x and the corresponding basis is B. Recall that the basic variables are given by
xB = B−1b and the reduced costs at the solution must have

c′ − c′BB
−1A ≥ 0′.

where c′B is the costs associated with basic variables.

Let p′ = c′BB
−1, we then have

p′A ≤ c′.

This implies p is a dual feasible solution. In addition,

p′b = c′BB
−1b = c′BxB = cx,

which proves that p is an optimal solution to the dual and the optimal values of the primal and dual are
equal.

Remark 4.5 The proof shows that when an optimal solution to the primal is obtained by simplex method,
the optimal solution to the dual is also obtained as p′ = c′BB

−1 and we do not need to re-solve the dual
program.

Lecture 4: Duality Theory 4-6

Remark 4.6 The proof hinges on the fact that when the simplex algorithm terminates, the reduced costs
must be nonnegative—this is clearly guaranteed if the optimal solution is nondegenerate. However, when the
optimal solution is degenerate, it is possible that c̄j < 0 for some nonbasic index j. The pivoting rules (see
Section 3.4 in [BT97]) that deals with degeneracy issue guarantees that the simplex algorithm terminates in
finite iterations with all reduced costs at optimal solution being nonnegative.

We summarize the relation between the optimal values of the primal and dual in the following table. The

Finite optimum Unbounded Infeasible
Finite optimum Possible Impossible Impossible

Unbounded Impossible Impossible Possible
Infeasible Impossible Possible Possible

table is explained as follows:

• When the primal has finite optimum, by strong duality, the dual also has one.

• When the primal is unbounded, by weak duality, the dual has to be infeasible.

• When the primal is infeasible, on the other hand, it is possible that the dual is also infeasible.

Example 4.7 Consider the primal

min x1 + 2x2

s.t.
x1+ x2 = 1
2x1+ 2x2 = 3

Its dual is

max p1 + 3p2

s.t.
p1+ 2p2 = 1
p1+ 2p2 = 2

Both problems are infeasible.

Theorem 4.8 (Complementary Slackness) Let x and p be feasible solutions to the primal and the dual
problem, respectively. The vectors x and p are optimal solutions for the two respective problems if and only
if

ui = pi(a
′
ix− bi) = 0

and
vj = (cj − p′Aj)xj = 0

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof: Recall in the proof of Theorem 4.3 that

m∑
i=1

ui = p′(Ax− b) ≥ 0

and
n∑

j=1

vj = (c′ − p′A)x ≥ 0.

Lecture 4: Duality Theory 4-7

Thus,
m∑
i=1

ui +

n∑
j=1

vj = c′x− p′b ≥ 0.

If x and p are primal and dual optimal, by strong duality c′x− p′b = 0 which implies
∑m

i=1 ui +
∑n

j=1 vj .
Since ui, vj ≥ 0, we must then have ui = vj = 0.

On the other hand, if ui = vj = 0, then c′x− p′b = 0, which implies x and p are primal and dual optimal.

Example 4.9 Consider the primal

min 3x1 + x2

s.t.
x1+ x2− x3 = 2
2x1− x2 −x4 = 0

x1, x2, x3, x4 ≥ 0

and its dual

max 2p1

s.t.

p1+ 2p2 ≤ 3
p1− p2 ≤ 1
−p1 ≤ 0

−p2 ≤ 0.

Consider the nondegenerate optimal solution x∗ = (2/3, 4/3, 0, 0). What is the optimal solution to the dual
problem?

One can see that when x∗ is nondegenerate, we have x∗B(i) > 0, i = 1, ...,m. The complementary slackness
conditions then imply

cB(i) − p′AB(i) = 0, i = 1, ...,m

or equivalently c′B − p′B = 0, which has a unique solution p′ = c′BB
−1. In fact, for any basic feasible

solution x to the primal problem with B being its basis, the vector p′ = c′BB
−1 specifies a basic solution

(not necessarily feasible) to the dual problem, which always satisfies p′b = c′BB
−1b = c′BxB = c′x. It

follows that when p′ becomes feasible, then both p′ and the corresponding basic feasible solution x become
optimal. In this sense, reduced cost can also be interpreted as the extend to which the dual basic solution
violates each constraint. The figure below illustrates the basic solutions of the primal and the corresponding
basic solutions of the dual for Example 4.9.

4.3 Geometric Interpretation of Duality and Farkas’ Lemma

For our illustration, we use the following example with the feasible set in the form of Ax ≥ b:

min 2x1 + 5x2

s.t. x1 + x2 ≥ 6,

− x1 − 2x2 ≥ −18,

x1 ≥ 0,

x2 ≥ 0.

Lecture 4: Duality Theory 4-8

The dual of this problem is given by

max 6p1 − 18p2

s.t. p1 − p2 + p3 = 2,

p1 − 2p2 + p4 = 5,

p1, p2, p3, p4 ≥ 0.

The feasible set of the primal problem is given in the figure below.

Without any constraints, the objective in the primal will decrease in a fastest way along the direction
(−2,−5). We can think of this direction as a direction of gravity and we can rotate the picture accordingly
as illustrated in the following figure. One can see that under the gravity, the ball will fall to the point
(6, 0) which is the primal optimal solution. What is the dual optimal solution? The ball stops at (6, 0) and
its gravity has to be counterbalanced by the forces from the “walls”, which have directions (0, 1) and (1, 1)
respectively. In other words, c can be represented as a positive combination of (0, 1) and (1, 1) at the optimal
point. Indeed, we have

c = 3(0, 1) + 2(1, 1).

The weight (3, 2) corresponds to the dual optimal solution (p∗1, p
∗
2, p
∗
3, p
∗
4) = (2, 0, 0, 3). One can also see that

the “walls”: −x1 − 2x2 ≥ −18 and x1 = 0 can be removed without affecting the position of the ball. The
complementary slackness conditions then imply p∗2 = p∗3 = 0.

Lecture 4: Duality Theory 4-9
I

c = (2, 5) = 3(0, 1) + 2 (1, 1)
S (-1, -2)

S (1, 1)S (0, 1)

S (1, 0)

The underlying general geometric result is called Farkas’s lemma:

Theorem 4.10 (Farkas’ Lemma) Let a1, ...,am and c be vectors in Rn. Then, exactly one of the following
alternatives holds:

1. There exists some p ≥ 0 in Rm such that

m∑
i=1

piai = c.

2. There exists some vector d ∈ Rn, such that

Ad =

 a′1
...

a′m

d ≥ 0

and c′d < 0.

Proof: Suppose the first alternative holds, and consider any vector d ∈ Rn, such that

Ad =

 a′1
...

a′m

d ≥ 0.

Since p ≥ 0, we must have p′Ad ≥ 0. It then follows that

p′Ad = c′d ≥ 0,

and the second alternative can never hold.

Now suppose the first alternative does not hold, i.e., we cannot find a vector p ≥ 0 in Rm such that

m∑
i=1

piai = c.

Lecture 4: Duality Theory 4-10

Consider the following problem

min c′x

s.t. Ax ≥ 0

and its dual

max p′0

s.t. p′A = c′

p ≥ 0.

The invalidity of the first alternative implies the dual problem is infeasible. By duality theory, we know that
the primal problem is either infeasible or has unbounded cost. Clearly, x = 0 is a feasible solution. Hence,
there must exist some vector d ∈ Rn, such that Ad ≥ 0 and c′d < 0.

Using the ball example, Farkas’ Lemma can be interpreted as either the ball reaches to a equilibrium where
all forces are balanced (the first statement) or there is a feasible direction d such that the ball can further
fall (cost can be reduced).

As another geometric interpretation of Farkas’ Lemma, it states that either the vector c can be expressed as
a nonnegative combination of the vectors a1, ...,am or there must exist a vector d such that the hyperplane
{x|d′x = 0} separates the vector c and the vectors a1, ...,am.

References

[BT97] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Springer, 1997.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 5: Sensitivity Analysis
Lecturer: Zhenyu Hu

Consider the standard form problem

min c′x

s.t. Ax = b,

x ≥ 0

and its dual

max p′b

s.t. p′A ≤ c′.

Suppose the rows of A are linearly independent and we already have an optimal basis B and the associated
optimal solution x∗.

Since in practice we often have incomplete knowledge of problem data, we wish to understand when certain
problem parameters are changed

• how the optimal cost would change;

• whether the current basis is still optimal.

5.1 Local Sensitivity Analysis

Adding a new variable

Suppose that we introduce a new variable xn+1, together with a cost coefficient cn+1 and corresponding
column An+1, and obtain the new problem

min c′x + cn+1xn+1

s.t. Ax + An+1xn+1 = b,

x ≥ 0, xn+1 ≥ 0.

• Since (x, xn+1) = (x∗, 0) is a basic feasible solution to the new problem, it is guaranteed that the
optimal cost will not increase.

• At basis B, xn+1 is a nonbasic variable and has reduced cost

c̄n+1 = cn+1 − c′BB−1An+1.

If c̄n+1 ≥ 0, then (x, xn+1) = (x∗, 0) is an optimal solution to the new problem and the optimal cost
will remain unchanged. If, on the other hand, c̄n+1 < 0, then we can perform a simplex iteration by
letting An+1 into the basis.

5-1

Lecture 5: Sensitivity Analysis 5-2

Example 5.1 Consider the problem

min − 5x1 − x2 + 12x3

s.t. 3x1 + 2x2 + x3 = 10,

5x1 + 3x2 + x4 = 16,

x1, x2, x3, x4 ≥ 0.

An optimal solution to this problem is given by x = (2, 2, 0, 0) and the corresponding simplex tableau is given
by

x1 x2 x3 x4
12 0 0 2 7
2 1 0 −3 2
2 0 1 5 −3

Let us now introduce a variable x5 and consider the new problem

min − 5x1 − x2 + 12x3 − x5
s.t. 3x1 + 2x2 + x3 + x5 = 10,

5x1 + 3x2 + x4 + x5 = 16,

x1, x2, x3, x4, x5 ≥ 0,

where A5 = (1, 1).

To see if the new problem has a lower cost, we compute the reduced cost for x5:

c̄5 = c5 − c′BB−1A5 = −1− [−5,−1]

[
−3 2
5 −3

] [
1
1

]
= −4.

Indeed, using simplex to bring x5 into the basis and x2 out of the basis, the new solution can be given by
x = (3, 0, 0, 0, 1).

Adding a new equality constraint

Consider now a new constraint
a′m+1x = bm+1

is added with a′m+1 = (a1, ..., an).

• If x∗ satisfies a′m+1x
∗ = bm+1, then x∗ is also optimal to the new problem.

• If x∗ violates a′m+1x = bm+1, we assume without loss of generality that a′m+1x
∗ > bm+1. To obtain a

new solution without resolving the problem again, we consider

min c′x +Mxn+1

s.t. Ax = b,

a′m+1x− xn+1 = bm+1,

x ≥ 0, xn+1 ≥ 0,

Lecture 5: Sensitivity Analysis 5-3

where M is a large positive constant. Note that (x∗, xn+1), where xn+1 = a′m+1x
∗ − bm+1 is a basic

feasible solution to this problem with the basis

B̄ =

[
AB(1) . . . AB(m) 0
aB(1) . . . aB(m) −1

]
One can then apply simplex method to this problem starting from (x∗, xn+1) without solving again
from the scratch.

Changing the vector b

Suppose that some component bi of the requirement vector b is changed to bi + δ. Alternatively, we can
write b is changed to b + δei and the new problem is:

min c′x

s.t. Ax = b + δei,

x ≥ 0.

In this case, the original solution x∗ clearly becomes infeasible. Yet, changes in b does not affect the basis
B and the new basic solution corresponding to B is

xB = B−1(b + δei).

• By our construction, the equality constraints are clearly satisfied:

n∑
j=1

Ajxj = BxB = BB−1(b + δei) = b + δei.

• The reduced cost for the new solution is still

c′ − c′BB−1A ≥ 0′.

• Non-negativity constraints
xB = B−1(b + δei) ≥ 0,

however, may not be satisfied. To see this, let g = (β1i, β2i, ..., βmi) be the ith column of B−1. Then

xB = x∗B + δg.

Thus, for xB ≥ 0, it is sufficient to require

x∗B(j) + δβji ≥ 0, j = 1, ...,m.

This gives a bound on δ:

max
{j|βji>0}

(−
x∗B(j)

βji
) ≤ δ ≤ min

{j|βji<0}
(−
x∗B(j)

βji
).

To sum up, as long as δ is small enough, the new solution xB = B−1(b + δei) is optimal, and the new
optimal cost is

c′BxB = c′BB−1(b + δei).

Lecture 5: Sensitivity Analysis 5-4

When x∗ is optimal to the original problem, the optimal dual solution for the original problem is

p′ = c′BB−1.

Thus, the new cost can be further written as

c′BxB = p′b + δpi = c′Bx∗B︸ ︷︷ ︸
original cost

+ δpi︸︷︷︸
cost variation

,

which leads to the following observations:

• When pi > 0, the cost increases;

• When pi < 0, the cost decreases.

5.2 Global Dependence

Dependence on b

Let
P (b) = {x|Ax = b,x ≥ 0}

and
S = {b|P (b) is nonempty}.

Note that S = {Ax : x ≥ 0} and is a convex set. For any b ∈ S, let

F (b) = min
x∈P (b)

c′x.

We assume that {p|p′A ≤ c′} 6= ∅ so that F (b) is finite for any b ∈ S.

Suppose for some b∗ ∈ S, there exists a nondegenerate optimal BFS. We let B be the corresponding basis
and by nondegeneracy xB = B−1b∗ > 0. As in the local sensitivity analysis, if we change b∗ to b, as long
as b− b∗ is sufficiently small, we have B−1b > 0 as well and the corresponding optimal cost becomes

F (b) = c′BB−1b = p′b

where p′ = c′BB−1. That is, F (b) is a linear function in the vicinity of b∗. In general, we have the following
result.

Theorem 5.2 The optimal cost F (b) is a convex function of b on the set S.

Proof: Let b1,b2 ∈ S and λ ∈ [0, 1]. We want to show that F (λb1 + (1− λ)b2) ≤ λF (b1) + (1− λ)F (b2).

Let x1,x2 be the optimal solution corresponding to b1,b2 respectively. Hence, F (b1) = c′x
1
, F (b2) = c′x

2
.

Note that λx1 + (1− λ)x2 satisfies

A(λx1 + (1− λ)x2) = λb1 + (1− λ)b2

and λx1 + (1− λ)x2 ≥ 0. This implies λx1 + (1− λ)x2 ∈ P (λb1 + (1− λ)b2). As a result,

F (λb1 + (1− λ)b2) ≤ c′(λx1 + (1− λ)x2) = λF (b1) + (1− λ)F (b2).

Lecture 5: Sensitivity Analysis 5-5

By strong duality, we also have

F (b) = max p′b

s.t. p′A ≤ c′.

Let p1, ...,pN be the extreme points of the dual feasible set. It follows that

F (b) = max
i=1,...,N

(pi)′b, b ∈ S,

which is a piecewise linear convex function.

Definition 5.3 Let F be a convex function defined on a convex set S. Let b∗ ∈ S. A vector p is said to be
a subgradient of F at b∗ if

F (b∗) + p′(b− b∗) ≤ F (b), ∀b ∈ S.

When F (b) is differentiable, there is a unique subgradient, equal to the gradient of F .

Theorem 5.4 Suppose at b∗ ∈ S, the primal problem is feasible and has finite optimal cost. Then, a vector
p is an optimal solution to the dual problem if and only if it is a subgradient of F at the point b∗.

Proof: Suppose p is an optimal solution to the dual problem. We then have p′b∗ = F (b∗). On the other
hand, for any b ∈ S, p is still feasible and hence we must have p′b ≤ F (b). Thus,

p′(b− b∗) ≤ F (b)− F (b∗).

Now suppose p is a subgradient of F at b∗. For any x ≥ 0, let b = Ax such that b ∈ S. We then have

p′b = p′Ax ≤ F (b)− F (b∗) + p′b∗ ≤ c′x− F (b∗) + p′b∗

or equivalently (c′ − p′A)x ≥ F (b∗)−p′b∗ for any x ≥ 0. This implies c′ − p′A ≥ 0, i.e., p is dual feasible.
In addition, with x = 0, we have p′b∗ ≥ F (b∗) and by feasibility p′b∗ = F (b∗), i.e., p is an optimal dual
solution.

Dependence on c

We assume the feasible set {x|Ax = b,x ≥ 0} 6= ∅. Let

Q(c) = {p|p′A ≤ c′}

and
T = {c|Q(c) is nonempty},

which is convex. For any c ∈ T , let

G(c) = min c′x

s.t. Ax = b,

x ≥ 0

then by the definition of T , G(c) is finite for any c ∈ T .

Lecture 5: Sensitivity Analysis 5-6

Theorem 5.5 The optimal cost G(c) is a piecewise linear concave function of c on the set T . In addition,
if for some c∗ ∈ T , the optimal solution has a unique solution x, then G has a gradient of x at c∗.

Proof: Let x1,x2, ...,xN be the extreme points of the feasible set and we have

G(c) = min
i=1,...,N

c′x
i
.

Hence, G(c) is a piecewise linear concave function of c.

If for some c∗ ∈ T , the optimal solution has a unique solution xi, we have

(c∗)′xi < (c∗)′xj , j 6= i.

Then, for c sufficiently close to c∗, one still has c∗xi < c∗xj for j 6= i. In other words, G(c) = c′x
i

and
hence has gradient xi at c∗.

References

[BT97] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Springer, 1997.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 6: Applications of Duality Theory
Lecturer: Zhenyu Hu

6.1 Economic Interpretation of Duality

We interpret duality theory in the context of a production example. Consider a firm producing n products
from m resources. Product j, 1 ≤ j ≤ n can be sold at a price cj and requires aij amount of resource i. The
firm has bi amount of resource i. If the firm decides to produce xj units of product j, then it must satisfy
the resource constraint

∑n
j=1 aijxj ≤ bi and it gives the firm a revenue of

∑n
j=1 cjxj . The firm then seeks

to solve:

max c′x

s.t. Ax ≤ b

x ≥ 0.

(6.1)

Now, suppose there is a market (or supplier) for the resources as well. In this market, resource i is priced at
pi, pi ≥ 0. The firm, starting with a position of bi units of the i th resource can both buy or sell the resource
at the price pi. In this case, the firm is no longer constrained by the resources it has and seeks to solve the
following problem instead:

max
x≥0

c′x +

m∑
i=1

pi(bi −
n∑
j=1

aijxj). (6.2)

Note that if bi >
∑n
j=1 aijxj , the firm sells bi −

∑n
j=1 aijxj units of resource i to the market. If bi <∑n

j=1 aijxj , then the firm buys
∑n
j=1 aijxj − bi units of resource i from the market.

Given the production decision x and the market prices pi, we can rewrite the objective in (6.2) as

c′x +

m∑
i=1

pibi −
m∑
i=1

pi(

n∑
j=1

aijxj)

=c′x + p′b− p′Ax

=p′b + (c′ − p′A)x.

From the market’s perspective:

• The term p′b can be interpreted as the buy-back cost from the firm.

• The term (c′ − p′A)x =
∑n
j=1(cj − p′Aj)xj can be interpreted as the opportunity cost incurred by

the market for not producing the products by itself.

The market then seeks to solve

min
p

p′b +

{
max
x≥0

(c′ − p′A)x

}
.

6-1

Lecture 6: Applications of Duality Theory 6-2

• If cj − p′Aj > 0 for some j = 1, .., n, there exists an arbitrage opportunity for producing product j
and xj →∞.

• If cj − p′Aj ≤ 0, then there is no arbitrage opportunity and the profit from producing j is 0.

The market’s problem then becomes

min p′b

s.t. p′A ≥ c′

p′ ≥ 0′,

which is the dual of (6.1).

6.2 Profit Allocation Problem

Consider now there are a set of firms N = {1, 2, ..., N}. Firm i owns a resource vector bi, and a subset of
firms S ⊆ N can pool their resources to engage in a joint production

V (S) = max c′x

s.t. Ax ≤
∑
i∈S

bi

x ≥ 0.

The function V : 2N → R is called the characteristic function, and we assume here that it takes finite values
for any S ⊆ N . The pair (N , V) defines a cooperative game. In this game, we are concerned with how to
allocate the total profit V (N) to each of the firm in N .

An allocation is a vector l = (l1, ..., lN) ∈ RN , and is said to be in the core if∑
i∈S

li ≥ V (S)

for any S ⊆ N and
∑
i∈N li = V (N). The problem of finding a core allocation can be formulated as the

following linear programming problem:

min
∑
i∈N

li

s.t.
∑
i∈S

li ≥ V (S), S ⊆ N .

The above problem has exponential number of constraints and is difficult to solve in general1. We have the
following result regarding to the core of the game (N , V).

Theorem 6.1 (Owen 1975) Let p∗ be the optimal solution to the dual problem:

min p′

(∑
i∈N

bi

)
s.t. p′A ≥ c′

p′ ≥ 0′,

and let li = (p∗)′bi for i = 1, ..., N . Then, l is in the core of the game (N , V).

1It can, however, be solved in polynomial time when V (S) is supermodular.

Lecture 6: Applications of Duality Theory 6-3

Proof: First note that by strong duality
∑
i∈N li =

∑
i∈N (p∗)′bi = V (N). In addition, for any S ⊆ N , the

dual problem to the joint production problem is

V (S) = min p′

(∑
i∈S

bi

)
s.t. p′A ≥ c′

p′ ≥ 0′.

Clearly, p∗ is a feasible solution to the above problem and hence we must have∑
i∈S

li = (p∗)′

(∑
i∈S

bi

)
≥ V (S).

6.3 Robust Optimization Problem

Consider the problem (6.1) again—which we refer to as the nominal problem here. For any resource con-
straint i:

a′ix ≤ bi,
instead of knowing the resource requirement aij for each of the product j exactly, we assume now that it is
uncertain and we use ãij to denote this random variable. Suppose ãij has support [aij − δij , aij + δij], where
δij ≥ 0. We can hence alternatively write

ãij = aij + δijzij ,

where zij is a random variable with support [−1, 1].

Model of Soyster (1973)

In this model, we require our decisions to satisfy the constraint
n∑
j=1

ãijxj ≤ bi,

for any possible realizations of ãij . Equivalently, we require

gi(x) ≤ bi,

where

gi(x) = max
zij

n∑
j=1

(aij + δijzij)xj

s.t. − 1 ≤ zij ≤ 1.

Note that max−1≤zij≤1 δijxjzij = δij |xj |. Hence, gi(x) =
∑n
j=1(aijxj + δij |xj |), and we have a robust

counterpart of problem (6.1)

max c′x

s.t.

n∑
j=1

(aijxj + δij |xj |) ≤ bi, i = 1, ...,m

x ≥ 0,

Lecture 6: Applications of Duality Theory 6-4

which can be reformulated as the following LP2:

max c′x

s.t.

n∑
j=1

(aijxj + δijyj) ≤ bi, i = 1, ...,m

xj ≤ yj ,
− xj ≤ yj ,
x ≥ 0.

Model of Bertsimas and Sim (2004)

Note that in solving for gi(x) in the model of Soyster (1973), we must have at optimum
∑n
j=1 |zij | = n. In

other words, either zij = 1 or zij = −1 and all random variables achieve the worst case simultaneously—
which is highly unlikely in practice.

To model certain risk pooling effect, we can require

n∑
j=1

|zij | ≤ αin

for some αi ∈ [0, 1] and we find the worst case realization by solving

gi(x) = max
zij

n∑
j=1

(aij + δijzij)xj

s.t. − 1 ≤ zij ≤ 1
n∑
j=1

|zij | ≤ αin.

• When αi = 0, gi(x) = a′ix and we are back to the nominal problem.

• When αi = 1, the constraint
∑n
j=1 |zij | ≤ αin is redundant and we are back to the model of Soys-

ter (1973).

Note that at optimum, zij must have the same sign as xj (otherwise be flipping the sign of zij , we still have a
feasible solution with higher objective value), i.e., zijxj = |zij ||xj |. It follows that gi(x) can be reformulated
as the linear program

gi(x) =

n∑
j=1

aijxj + max
zij

n∑
j=1

δij |xj |zij

s.t. zij ≤ 1
n∑
j=1

zij ≤ αin

zij ≥ 0.

(6.3)

2Of course, since we know x ≥ 0, the term |xj | can be directly replaced by xj without using the reformulation. But the
reformulation works for more general problems.

Lecture 6: Applications of Duality Theory 6-5

In general, we do not have a closed-form for gi(x) (what kind of function it is?). The question now is how
we can solve the robust counterpart of problem (6.1):

max c′x

s.t. gi(x) ≤ bi, i = 1, ...,m

x ≥ 0,

without an explicit expression for gi(x). Note that gi(x) ≤ bi if and only if for the optimal solution to (6.3):
z∗ij , i.e., the worst case realization, we have

∑n
j=1 aijxj +

∑n
j=1 δij |xj |z∗ij ≤ bi. The difficulty here is z∗ij

depends on x.

Consider the dual problem of (6.3):

gi(x) =

n∑
j=1

aijxj + min
pij ,λi

n∑
j=1

pij + αinλi

s.t. pij + λi ≥ δij |xj |, j = 1, ..., n

pij , λi ≥ 0.

The key observation here is that gi(x) ≤ bi if and only if there exists pij , λi ≥ 0 and pij + λi ≥ δij |xj | for
j = 1, ..., n such that

n∑
j=1

aijxj +

n∑
j=1

pij + αinλi ≤ bi.

As a result, the robust counterpart can be reformulated as

max c′x

s.t.

n∑
j=1

aijxj +

n∑
j=1

pij + αinλi ≤ bi, i = 1, ...,m

pij + λi ≥ δij |xj |, i = 1, ...,m, j = 1, ..., n

x ≥ 0, pij , λi ≥ 0,

which can be reformulated as an LP:

max c′x

s.t.

n∑
j=1

aijxj +

n∑
j=1

pij + αinλi ≤ bi, i = 1, ...,m

pij + λi ≥ δijyj , i = 1, ...,m, j = 1, ..., n

yj ≥ xj , yj ≥ −xj , j = 1, ..., n

x ≥ 0, pij , λi ≥ 0.

References

[Bertsimas and Sim 2004] D. Bertsimas and M. Sim, 2004, “The price of robustness”, Operations Research,
52(1), pp. 35–53.

[Owen 1975] G. Owen, 1975, “On the core of linear production games”, Mathematical Programming, 9(1),
pp. 358–370.

[Soyster 1973] A.L Soyster, 1973, “Convex programming with set-inclusive constraints and applications to
inexact linear programming”, Operations Research, 21, pp. 1154–1157.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 7: Large Scale Optimization
Lecturer: Zhenyu Hu

7.1 Revised Simplex Method and Delayed Column Generation

Consider the standard form problem

min c′x

s.t. Ax = b,

x ≥ 0.

In the full tableau implementation, in each iteration we update the following table which requires us to

−c′BB−1b c′ − c′BB−1A
B−1b B−1A

compute the reduced cost c̄j = cj − c′BB−1Aj and the search direction B−1Aj for all nonbasic variables xj .

However, in some large scale optimization problems, we have a huge number of decision variables, i.e, n is
very large, and accessing every column in the matrix A in each iteration can be time consuming. One can
overcome this difficulty if the following two steps can be achieved:

• One can efficiently solve
min

j=1,...,n
c̄j

without computing every c̄j ;

• One can perform simplex iteration without accessing to each column Ai in each iteration.

The second step is the key idea behind the revised simplex method, whose typical iteration is summarized
below.

An iteration of the revised simplex method

1. In each iteration, we start with the basic columns AB(1), ...AB(m), the associated BFS x and B−1.

2. Compute the reduced costs c̄j = cj − c′BB−1Aj sequentially. If one encounters c̄j < 0 for some j for
the first time, then stop and return the index j. If all reduced costs are all nonnegative, the current
basic feasible solution is optimal, and the algorithm terminates.

3. For the returned nonbasic index j, compute u = B−1Aj . If u ≤ 0, then the optimal cost is −∞ and
the algorithm terminates; else let

θ∗ = min
{i|ui>0}

xB(i)

ui
.

and l be the index such that θ∗ =
xB(l)

ul
. Form a new basis by replacing AB(l) with Aj and compute

the new BFS y via yj = θ∗, and yB(i) = xB(i) − θ∗ui for i 6= l.

7-1

Lecture 7: Large Scale Optimization 7-2

4. Finally, we update B−1 to B̄−1 by performing row operations to make[
B−1 u

]
→
[

B̄−1 el

]
.

Note that the steps 3 and 4 are essentially the same as solving

min

m∑
i=1

cB(i)xB(i) + cjxj

s.t. BxB + Ajxj = b,

xB ≥ 0, xj ≥ 0.

In some delayed column generation methods, instead of keeping just the basic columns and throwing away
the exit column in each iteration, one may keep some of the columns {Ai|i ∈ I} with I ⊆ {1, ..., n} and solve
the following smaller problems (without explicitly going through the simplex iteration as in steps 3 and 4)

min

m∑
i=1

cB(i)xB(i) + cjxj +
∑
i∈I

cixi

s.t. BxB + Ajxj +
∑
i∈I

Aixi = b,

xB ≥ 0, xi, xj ≥ 0.

In the revised simplex method, once a column Aj with negative reduced cost is found, the rest of the nonbasic
columns will not be accessed when performing steps 3 and 4. However, in step 2, in the worst case, one still
needs to generate every column Aj—the generation of the columns is not delayed.

We demonstrate using the example below that when the problem has certain special structure, minj c̄j can
be computed without accessing to every column Aj .

Example 7.1 (Cutting Stock Problem) Consider a paper company that has a supply of large rolls of
paper of width W , which is assumed to be a positive integer. There are demands for bi rolls of paper with
width wi, where wi ≤ W for i = 1, ...,m. A large roll can be sliced in a certain pattern to obtain smaller
rolls. Let ai be the number of rolls of width wi to be produced from a single large roll. A feasible pattern
(a1, ..., am) then must satisfy

m∑
i=1

aiwi ≤W.

If there are in total n feasible patterns, we then collect all feasible patterns in a matrix A of dimension m×n.

For instance, when W = 7, w1 = 2, w2 = 4, the following matrix summarizes all feasible patterns:

A =

[
0 0 1 1 2 3
0 1 0 1 0 0

]
,

with the column Aj corresponding to a pattern j.

Let xj be the number of large rolls cut according to pattern j. The company seeks to minimize the number
of large rolls used while satisfying customer demand:

min

n∑
j=1

xj

s.t.

n∑
j=1

aijxj = bi, i = 1, ...,m

xj ≥ 0, j = 1, ..., n.

Lecture 7: Large Scale Optimization 7-3

Each xj should be an integer, but we consider its linear relaxation here.

Even if m is small, n can be huge and even writing down all the columns of A can be difficult. Instead, we
can use revised simplex method and start with the basis I, i.e., the pattern where only one roll of width wj is
produced from a large roll is always feasible (although may not be economical) for any j = 1, ...,m.

At each iteration, given a basis B, we can compute the dual basic solution p′ = c
′
BB−1. Instead of computing

c̄j = cj − p′Aj = 1 − p′Aj for every j = 1, ..., n. We seek to solve minj c̄j or equivalently maxj p′Aj. By
definition of Aj , j = 1, ..., n, this is equivalent as

max
ai,i=1,...,m

m∑
i=1

piai

s.t.

n∑
i=1

wiai ≤W,

ai ≥ 0, integer, i = 1, ...,m.

The above problem is called the knapsack problem—although known as an NP-hard problem, can still be
efficiently solved when m is small.

Upon solving the knapsack problem:

• If the knapsack problem returns an optimal value less than or equal to one, we then know c̄j ≥ mini c̄i ≥
0. Hence, the current basis B is optimal.

• If the knapsack problem returns a value greater than one with optimal solution (a∗1, ..., a
∗
m), then we

have identified a nonbasic column A′j = (a∗1, ..., a
∗
m), that enters the basis.

7.2 Delayed Constraint Generation

Consider the dual of the standard form problem

max p′b

s.t. p′Ai ≤ ci, i = 1, ..., n.

When A has large number of columns, i.e., n is large, the number of constraints in the above dual problem
is large. Like delayed column generation, we can consider a subset I ⊆ {1, ..., n} of the constraints, and form
the relaxed dual problem

max p′b

s.t. p′Ai ≤ ci, i ∈ I.

Let p∗ be the optimal basic feasible solution to the relaxed dual problem.

• If p∗ satisfies all the constraints p′Ai ≤ ci, i = 1, ..., n. Then, p∗ must also be optimal to the original
dual problem, and the algorithm terminates.

• If p∗ violates constraint i for some i 6∈ I, then we add i into I.

The step of checking feasibility is the same as checking the nonnegativity of the reduced cost in the delayed
column generation method, and we need an efficient method for identifying a violated constraint. Usually,
this is achieved by finding an efficient way for solving

min
i=1,...,n

ci − (p∗)′Ai.

Lecture 7: Large Scale Optimization 7-4

Solving the above problem without going through every term ci − (p∗)′Ai is possible when the problem has
certain special structure, which we demonstrate next.

7.3 Stochastic Programming and Benders Decomposition

Let (Ω,F ,P) be a probability space. Consider a decision maker who acts in two consecutive stages with
some random information being revealed in the second stage. In the first stage, the decision maker needs to
choose a vector x that satisfies the constraints

Ax = b,

x ≥ 0.

The decision x generates an immediate cost c′x.

In the second stage, some random variables B(ω),d(ω) are revealed, where ω denotes a particular scenario
(or sample) from the sample space Ω. Given a particular scenario ω and the first stage decision x, the
decision maker needs to choose another vector y(ω) that satisfies the constraints

B(ω)x + Dy(ω) = d(ω),

y(ω) ≥ 0.

The decision y(ω) generates a second stage cost f ′y(ω). Let z(x, ω) be the minimum second stage cost given
a scenario ω and first stage decision x. It follows that

z(x, ω) = min
y(ω)

f ′y(ω)

s.t. B(ω)x + Dy(ω) = d(ω),

y(ω) ≥ 0.

(7.1)

Now, the optimization problem in the first stage can be written as

min
x

c′x + EP[z(x, ω)]

s.t. Ax = b,

x ≥ 0.

(7.2)

While EP[z(x, ω)] is in general a nonlinear function of x, the above problem can nevertheless be formulated
as an LP when Ω consists of finite samples, say, ω1, ..., ωK . Let αi be the probability of scenario ωi. The
above problem is then equivalent to

min
x,yi,i=1,...,K

c′x +

K∑
i=1

αif
′yi

s.t. Ax = b,

Bix + Dyi = di, i = 1, ...,K

x,y1, ...,yK ≥ 0.

(7.3)

Example 7.2 (Joint Inventory and Transportation Problem) Suppose a retailer manages the inven-
tory at n warehouses, which are used to satisfy random demands at m locations. In the first stage, the retailer
needs to decide x ∈ Rn with xi being the inventory placed at warehouse i for i = 1, ..., n. The procurement
cost at warehouse i is ci so that the total procurement cost generated in the first stage is c′x.

Lecture 7: Large Scale Optimization 7-5

In the second stage, the demand d(ω) at m locations is realized with dj(ω) being the demand at location j
in scenario ω. Given the inventory level x and the demand realization d(ω), the retailer needs to decide
yij(ω), the amount of inventory transported from warehouse i to satisfy demand at location j. The unit
transportation cost from i to j is tij and the unit revenue for satisfying demand at location j is rj. The
second stage problem is then

z(x, ω) = min
y(ω)

n∑
i=1

m∑
j=1

(tij − rj)yij(ω)

s.t.

m∑
j=1

yij(ω) ≤ xi,

n∑
i=1

yij(ω) ≤ dj(ω),

y(ω) ≥ 0.

The first stage problem is simply

min
x

c′x + EP[z(x, ω)]

s.t. x ≥ 0.

When K is large and y(ω), d(ω) has dimension m, t respectively, the formulation in (7.3) is an LP with
O(mK) decision variables and O(tK) equality constraints, and can be computationally demanding to solve1.
Observe that given a fixed x, the problems of finding y(ω) are all decoupled and we can solve K much
smaller LPs, i.e., (7.1), with m decision variables and t equality constraints. The difficulty lies in the fact
that finding x is coupled with finding y(ω), ω ∈ Ω. The idea behind Benders decomposition is to decouple
the two tasks.

In the following we assume that (7.1) is feasible and has finite optimal value for any ω ∈ Ω. The dual of
(7.1) is

z(x, ω) = max
p(ω)

p′(ω)(d(ω)−B(ω)x)

s.t. p′(ω)D ≤ f ′.
(7.4)

Let pi, i = 1, ..., I be the extreme points of {p|p′D ≤ f ′}. By our assumption on (7.1), problem (7.4) also
has finite optimal value and we must have

z(x, ω) = max
i=1,...,I

(pi)′(d(ω)−B(ω)x),

which is equivalent to

z(x, ω) = min
z(ω)

z(ω)

s.t. (pi)′(d(ω)−B(ω)x) ≤ z(ω), i = 1, ..., I.

We can then reformulate (7.3) as

min
x,z(ω)

c′x +
∑
ω∈Ω

αiz(ω)

s.t. Ax = b,

(pi)′(d(ω)−B(ω)x) ≤ z(ω), i = 1, ..., I, ω ∈ Ω,

x ≥ 0.

(7.5)

1Keep in mind that computing the inverse of an m×m dimension matrix B or solving a linear system Bx = b takes O(m3).

Lecture 7: Large Scale Optimization 7-6

We call formulation (7.5) the master problem, which only has O(K) decision variables (as opposed to O(mK)
in (7.3)). But (7.5) has an extremely large number of inequality constraints—O(IK). We can overcome this
via delayed constraint generation.

We start with (7.3) that involves only a subset of inequality constraints. Suppose the resulting optimal
solution to this relaxed master problem is x∗ and z∗ = (z∗1 , ..., z

∗
K). We then need to check the feasibility

of (x∗, z∗) with respect to the rest of constraints in (7.3). The key idea here is to solve some auxiliary
subproblems instead of checking the constraints (pi)′(d(ω)−B(ω)x∗) ≤ z∗(ω) one by one. In particular,
for each ω ∈ Ω, we solve

min
y(ω)

f ′y(ω)

s.t. Dy(ω) = d(ω)−B(ω)x∗,

y(ω) ≥ 0.

From solving above problem, we can obtain the optimal dual BFS: pi(ω) for every ω ∈ Ω.

• If (pi(ω))′(d(ω)−B(ω)x∗) ≤ z∗(ω) for every ω ∈ Ω, then by optimality of pi(ω),

(pi)′(d(ω)−B(ω)x∗) ≤ z∗(ω)

for all i = 1, ..., I. As a result, (x∗, z∗) is feasible to (7.5) and hence optimal.

• If (pi(ω̄))′(d(ω̄)−B(ω̄)x∗) > z∗(ω̄) for some ω̄ ∈ Ω, then we have identified a violating constraint:

(pi(ω̄))′(d(ω̄)−B(ω̄)x) ≤ z(ω̄),

which is added to the relaxed master problem.

References

[BT97] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Springer, 1997.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 8: Network Flow Problems
Lecturer: Zhenyu Hu

8.1 Min-Cost Network Flow Problem

Given a directed connected graph G = (N ,A), we associate with each node i ∈ N an integer number bi.

• If bi > 0, the node i is called a supply or source node;

• If bi < 0, the node i is called a demand or sink node;

• If bi = 0, the node i is called a transshipment node.

We assume that ∑
i∈N

bi = 0.

The general network flow problem concerns with sending materials from the source node to the sink node
through the arcs of the network at minimum cost. Along the arc (i, j), the cost per unit of flow is cij and
the maximum units of flow is uij . The min-cost network flow problem can be formulated as the following
linear programming problem:

min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi, i ∈ N

0 ≤ xij ≤ uij , (i, j) ∈ A.

Transportation Problem

In this case G is a complete bipartite graph with m supply nodes and n demand nodes. Let

• ai be number of units available at supply i, i = 1, ...,m;

• bj be the number of units required at demand j, j = 1, ..., n;

• cij be the unit transportation cost from i to j.

8-1

Lecture 8: Network Flow Problems 8-2

We have

min

m∑
i=1

n∑
j=1

cijxij

s.t.

n∑
j=1

xij = ai, i = 1, ...,m

n∑
i=1

xij = bj , j = 1, ..., n

xij ≥ 0.

Assignment Problem

In the transportation problem when m = n and ai = bj = 1, we then have the assignment problem:

min

n∑
i=1

n∑
j=1

cijxij

s.t.

n∑
j=1

xij = 1, i = 1, ..., n

n∑
i=1

xij = 1, j = 1, ..., n

xij ≥ 0.

Shortest Path Problem

The problem concerns with finding the minimum cost path from a source node s to a sink node t, with cij
being the cost associated with traversing the arc (i, j). The problem can be formulated as

min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =


1, if i = s,

− 1, if i = t,

0, otherwise,

xij ≥ 0, (i, j) ∈ A.

Lecture 8: Network Flow Problems 8-3

Maximum Flow Problem

The problem is to find the largest possible amount of flow that can be sent through the network, from s to
t with the capacity on the arc (i, j) being uij , uij ≥ 0. The problem can be formulated as

max v

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =


v, if i = s,

− v, if i = t,

0, otherwise,

0 ≤ xij ≤ uij , (i, j) ∈ A.

(8.1)

For any feasible flow, the objective value v is called the value of the flow. Note that v is a decision variable
itself, and hence the above formulation is not an exact match to the min-cost network flow problem. By
adding an artificial arc (t, s) with uts = +∞ to A, i.e., Ã = A ∪ {(t, s)}, we can reformulate the above
problem as

max xts

s.t.
∑

j:(i,j)∈Ã

xij −
∑

j:(j,i)∈Ã

xji = 0

0 ≤ xij ≤ uij , (i, j) ∈ Ã.

Special Structure

The flow conservation constraints can be concisely written as

Ax = b,

where A is referred to as the node-arc incidence matrix. The matrix A has dimension |N | × |A| and its
(i, k)-th entry aik has the property:

aik =


1, if i is the start node of the k-th arc,

− 1, if i is the end node of the k-th arc,

0, otherwise.

Example 8.1 Consider the directed graph in Figure 8.1 below.

1

2

3

4

5

2

-1

-1

Figure 8.1: A directed graph (N ,A)

Lecture 8: Network Flow Problems 8-4

Let the flow on the arcs be x12, x13, x14, x21, x31, x35, x43. The corresponding node-arc incidence matrix is

A =


1 1 1 −1 −1 0 0
−1 0 0 1 0 0 0
0 −1 0 0 1 1 −1
0 0 −1 0 0 0 1
0 0 0 0 0 −1 0

 .

Note that each column in matrix A has exactly two nonzero entries, one equal to +1, and one equal to −1.
In particular, this implies that the sum of all the rows is a zero vector. The special structure here guarantees
that the matrix A is totally unimodular—all its square submatrix has determinant 0,±1 (see Section 4.2 in
[CCZ14] for the arguments behind).

Recall for standard form linear programming problem, any basic feasible solution with basis B is solved via
BxB = b. By Carmer’s Rule,

xB(i) =
det(Mi)

det(B)
,

where Mi = [B1, ...,Bi−1,b,Bi+1, ...,Bm]. As long as, the entries of b,A are integers, then det(Mi) is an
integer for any i. If A is totally unimodular, then det(B) is either 1 or −1 and hence xB(i) must be integer.

Finally, since the summation of the row vectors of A is a zero vector, the rows are linearly dependent and
we must have rank(A) ≤ |N | − 1.

8.2 Spanning Tree and Basic Solution

We consider the uncapacitated min-cost network flow problem here:

min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi, i ∈ N

xij ≥ 0, (i, j) ∈ A,

which is in standard form.

An undirected graph G = (N ,A) is called a tree if it is connected and has no cycles. Given a connected
undirected graph G = (N ,A), the spanning tree of G is a tree T that contains every node in G, i.e.,
T = (N , E) for some E ⊆ A.

Given a connected undirected (weighted) graph G = (N ,A), one can generate a (minimum) spanning tree
using Prim’s algorithm.

1. Initialize a tree with a single vertex.

2. Among the arcs that connect the tree to vertices not yet in the tree, find one (the minimum one for
weighted graph) and add it to the tree.

3. Repeat step 2 until all vertices are in the tree.

For example, one spanning tree for the graph in Figure 8.1 (ignoring directions) can be found as in Figure
8.2. We remark the following properties of a spanning tree.

Lecture 8: Network Flow Problems 8-5

1

2

3

4

5

2

-1

-1

Figure 8.2: Spanning tree for the graph in Figure 8.1

• Given a spanning tree T = (N , E) of G = (N ,A), one must have |E| = |N | − 1.

• Conversely, if for an arc set E ⊆ A with |E| = |N | − 1 such that T = (N , E) is connected, then
T = (N , E) is a spanning tree.

For min-cost network flow problem, one can construct a solution using a spanning tree T = (N , E) of
G = (N ,A) as follows.

1. Let xij = 0 for every (i, j) /∈ E .

2. Starting from each leaf of the tree (which has degree one), solve the flow on the arc with its parent
node (which is unique) using flow conservation constraint.

3. For any node whose flows on the arcs with all its children are all determined, solve the flow on the arc
with its parent node (which is unique) using flow conservation constraint.

4. Repeat step 3 until the root of the tree is reached.

We call the flow x solved via the above procedure as the spanning tree solution. The following theorem
demonstrates that spanning tree solution is nothing but the basic solution we defined for general LP problems.

Theorem 8.2 A flow vector x is a basic solution if and only if it is a spanning tree solution.

Proof: Suppose x is a spanning tree solution generated according to the algorithm outlined above. From
the way it is constructed, one can see that it satisfies Ax = b and it is unique. In other words, xij = 0 for
(i, j) /∈ E can be viewed as nonbasic variables and the variables xij for (i, j) ∈ E are the basic variables. The
columns corresponding to the basic variables constitute a matrix with |N | rows and |N | − 1 columns, which
has rank |N | − 1, since the system of equations yields a unique solution.

Conversely, if x is a basic solution, then let E = {(i, j)|xij is a basic variable}. By definition, for (i, j) /∈ E ,
xij 6= 0 and |E| = |N | − 1. In addition, the graph T = (N , E) must be connected and hence be a spanning
tree. Suppose not, then (N , E) contains a cycle. Consider a node j along with its predecessor i and successor
k in the cycle. Without loss of generality, we assume (i, j) ∈ E . If (j, k) ∈ E , then by letting yij = xij + δ
and yjk = xjk + δ, the flow conservation constraint at node j is not violated by the new flows. Similarly,
if (k, j) ∈ E , by letting yij = xij + δ and ykj = xjk − δ, the flow conservation constraint at node j is not
violated by the new flows. Repeating such modification of flows, one can arrive at a new solution y that
satisfies the flow conservation constraint at every node, which contradicts with the fact that x must be a
unique solution.

Lecture 8: Network Flow Problems 8-6

References

[BT97] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Springer, 1997.

[CCZ14] M. Conforti and G. Cornuéjols and G. Zambelli, Integer Programming, Springer, 2014.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 9: Convex Analysis
Lecturer: Zhenyu Hu

9.1 Convex Sets

Recall that a set C ⊆ Rn is said to be convex if for any 0 ≤ θ ≤ 1, and x, y ∈ C, one has θx+ (1− θ)y ∈ C.
Given a set C, the convex hull of C, denoted as conv(C) is the set of all convex combinations of points in C:

conv(C) = {θ1x1 + ...+ θkxk|xi ∈ C, θi ≥ 0, i = 1, ..., k, θ1 + ...+ θk = 1}.

In the following, we describe some important example of convex sets.

Convex cones

A set C is called a cone if for every x ∈ C and θ ≥ 0, we have θx ∈ C. A set C is a convex cone if it is
convex and a cone—for any x1, x2 ∈ C and θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ C.

A point of the form θ1x1 + ...+ θkxk is called a conic combination of x1, ..., xk. Similarly, a conic hull of a
set C is

cone(C) = {θ1x1 + ...+ θkxk|xi ∈ C, θi ≥ 0, i = 1, ..., k}.

Recall that the set {Ax | x ≥ 0} with A being a matrix with dimension m× n defines a convex cone in Rm.
It is the conic hull of the vectors A1, ..., An ∈ Rm.

Polyhedral cone: A polyhedron of the form C = {x ∈ Rn | Ax ≥ 0} is called a polyhedral cone. Clearly,
it is a convex cone, and it can have at most one extreme point. In particular, if it does not contain a line,
then it has a unique extreme point at zero. In this case, we call C pointed. Any x 6= 0 cannot be extreme
point since 3x/2 ∈ C, x/2 ∈ C and we have

x =
1

2

3x

2
+

1

2

x

2
.

Similar to the definition of extreme point, a nonzero vector x ∈ C is called an extreme ray if there are n− 1
linearly independent constraints that are active at x. We will see below that a polyhedral cone is exactly
the conic hull of all of its extreme rays.

Norm cone: Suppose || · || is any norm on Rn. A norm ball with radius r and center xc is defined as
B(xc, r) = {x | ||x − xc|| ≤ r}. The figure below shows the unit norm ball (actually its boundary) at the
origin for p-norm with different p values.

The norm cone is defined as the set

C = {(x, t) | ||x|| ≤ t} ⊆ Rn+1.

9-1

Lecture 9: Convex Analysis 9-2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

6
3
2

1.5
p=1

∞

One important special case is the second-order cone where the norm is specified by 2-norm (or Euclidean
norm):

C ={(x, t) ∈ Rn+1 | ||x||2 ≤ t}

=

{[
x
t

] ∣∣∣∣[x′ t]

[
I 0
0 −1

] [
x
t

]
≤ 0, t ≥ 0

}
.

Positive semidefinite cone: Let Sn denote the set of all symmetric n× n matrices:

Sn = {X ∈ Rn×n | X = X ′}.

The positive semidefinite cone Sn+ is defined as

Sn+ = {X ∈ Sn | X � 0}.

Note that for any θ1, θ2 ≥ 0 and A,B ∈ Sn+, we have θ1A + θ2B ∈ Sn+, and hence Sn+ is a convex cone. As
an example, consider {

X ∈ S2
∣∣∣∣X =

[
x y
y z

]
� 0

}
,

which is the same as
{(x, y, z) ∈ R3 | x, z ≥ 0, xz − y2 ≥ 0}.

Alternatively, we can express Sn+ as

Sn+ =
⋂
z∈Rn

{X ∈ Sn | z′Xz ≥ 0} ,

which is the intersection of infinite number of halfspaces and hence convex.

Polyhedron

Here, we discuss an alternative description of the polyhedron {x ∈ Rn|Ax ≥ b}.

Theorem 9.1 (Resolution Theorem) Let P = {x ∈ Rn|Ax ≥ b} be a nonempty polyhedron with at least
one extreme point. Let v1, ..., vk be the extreme points, and let w1, ..., wr be a complete set of extreme rays
of the cone {x ∈ Rn|Ax ≥ 0}. Let

Q =


k∑
i=1

λivi +

r∑
j=1

θjwj

∣∣∣∣∣λi ≥ 0, θj ≥ 0,

k∑
i=1

λi = 1

 .

Lecture 9: Convex Analysis 9-3

Then, Q = P .

Proof: See the proof of Theorem 4.15 in [BT97].

The above theorem essentially says any polyhedron can represented as the convex hull of its extreme points
plus the conic hull of its extreme rays.

Example 9.2 Consider the polyhedron defined by the constraints

x1 − x2 ≥ −2,

x1 + x2 ≥ 1,

x1, x2 ≥ 0.

One can find the extreme points as v1 = (0, 2), v2 = (0, 1), v3 = (1, 0), and the extreme rays as w1 =
(1, 1), w2 = (1, 0). The vector y = (2, 2), for example, can be represented as y = v2 + w1 + w2.

9.2 Generalized Inequalities

A cone K ⊆ Rn is called a proper cone if it satisfies the following

• K is convex.

• K is closed, i.e., if xi ∈ K for any i ≥ 1, and limi→∞ xi = x, then x ∈ K.

• K has nonempty interior, i.e., there exists x ∈ K and ε > 0 such that {y | ||y − x||2 ≤ ε} ⊆ K.

• K is pointed, i.e., it does not contain a line.

A proper cone K can be used to define a generalized inequality, which is partial ordering defined as follows:

x �K y ⇐⇒ y − x ∈ K.

The corresponding strict partial ordering can be defined as:

x ≺K y ⇐⇒ y − x ∈ int K,

where int K denotes the interior of K.

The idea is to generalize the usual componentwise inequality “≤” we used in linear programming problem.

Nonnegative orthant: Consider the special case when K = Rn+, the nonnegative orthant. It can be easily
verified that it is a proper cone. In this case, y − x ∈ Rn+ is the same as x ≤ y, i.e.,

xi ≤ yi, i = 1, ..., n.

Similarly, the strict partial ordering x ≺Rn
+
y corresponds to xi < yi, i = 1, ..., n.

Positive semidefinite cone: From the representation

Sn+ =
⋂
z∈Rn

{X ∈ Sn | z′Xz ≥ 0} ,

the positive semidefinite cone is the intersection of infinite number of closed half-spaces, and hence both
closed and convex. In addition, if X ∈ Sn+ and −X ∈ Sn+, then X = 0, and hence Sn+ cannot contain a line.

Lecture 9: Convex Analysis 9-4

To show that Sn+ has nonempty interior, we first generalize the inner-product and Euclidean norm defined
for vectors to matrices. Given two matrices X,Y ∈ Rm×n, the inner product on Rm×n is defined as

〈X,Y 〉 = tr(X ′Y) =

m∑
i=1

n∑
j=1

XijYij ,

where tr(A) denotes the trace of the matrix A. The “Euclidean norm” or Frobenius norm of a matrix
X ∈ Rm×n is given by

‖X‖F = (〈X,X〉)1/2 = (tr(X ′X))1/2 =

√√√√√
 m∑
i=1

n∑
j=1

X2
ij

.
We show that the identity matrix I is in the interior of Sn+. Given ε > 0, consider the norm ball

{Y | ‖Y − I‖F ≤ ε}.

By definition
(∑m

i=1

∑n
j=1(Yij − Iij)2

)
≤ ε, which implies

1− ε ≤ Yii ≤ 1 + ε, − ε ≤ Yij ≤ ε, i 6= j.

It follows that
|Yii| ≥ 1− ε ≥ (n− 1)ε ≥

∑
j 6=i

|Yij |

for ε small enough, which implies Y ∈ Sn+. In fact, any X � 0 is in the interior of Sn+, i.e., int Sn+ = Sn++,
the set of positive definite matrices.

In this case, X � Y means Y −X � 0.

Dual cones

Let K be a cone. The set
K∗ = {y | x′y ≥ 0 for all x ∈ K}

is called the dual cone of K. Clearly, for any y1, y2 ∈ K∗ and θ1, θ2 ≥ 0, we have

x′(θ1y1 + θ2y2) = θ1x
′y1 + θ2x

′y2 ≥ 0, ∀x ∈ K.

Hence, K∗ is a convex cone (regardless of whether K is convex or not).

Subspace: The dual cone of a subspace V ⊆ Rn is its orthogonal complement V ⊥ = {y | y′v = 0, ∀v ∈ V }.

Nonnegative orthant: The dual cone Rn+ is itself:

y′x ≥ 0, ∀x ≥ 0 ⇐⇒ y ≥ 0.

Such cone is called self-dual.

Positive semidefinite cone: The positive semi-definite cone Sn+ is self-dual on Sn. Suppose Y ∈ (Sn+)∗,
i.e.,

〈X,Y 〉 = tr(XY) ≥ 0, ∀X � 0.

We show that Y ∈ Sn+. If, on the contrary, Y 6∈ Sn, then there exists z ∈ Rn such that

z′Y z < 0.

Lecture 9: Convex Analysis 9-5

Note that
z′Y z = tr(zz′Y) < 0

and the matrix zz′ ∈ Sn+, which contradicts with Y ∈ (Sn)∗. This shows (Sn+)∗ ⊆ Sn+.

To show the other direction, suppose X,Y ∈ Sn+. By eigenvalue decomposition,

X = QΛQ′,

where

Λ =

 λ1 ... 0
...

. . .
...

0 ... λn


with λi ≥ 0 being the eigenvalues of X and Q = [q1 ... qn] with qi being the eigenvectors of X. It follows
that

X = QΛQ′ =
[
q1 ... qn

]  λ1q
′
1

...
λnq

′
n

 =
n∑
i=1

λiqiq
′
i.

Hence, we have

tr(Y X) = tr

(
Y

n∑
i=1

λiqiq
′
i

)
=

n∑
i=1

λitr (qiq
′
iY) =

n∑
i=1

λiq
′
iY qi ≥ 0,

i.e., Y ∈ (Sn+)∗.

Norm cone: The dual of the cone K = {(x, t) ∈ Rn+1 | ‖x‖ ≤ t} is the cone defined by the dual norm, i.e.,

K∗ = {(u, v) ∈ Rn+1 | ‖u‖∗ ≤ v},

where the dual norm is defined by ‖u‖∗ = sup{u′x | ‖x‖ ≤ 1}. To show this, suppose (u, v) ∈ K∗, i.e.,

u′x+ vt ≥ 0, ∀(x, t) ∈ K,

which is equivalent as
u′(−x/t) ≤ v, ∀(x, t) ∈ K.

By (x, t) ∈ K, we have ‖x‖ ≤ t⇐⇒ ‖− x/t‖ ≤ 1. Hence,

sup{u′(−x/t) | (x, t) ∈ K} = sup{u′(−x/t) | ‖ − x/t‖ ≤ 1} = ‖u‖∗ ≤ v.

Conversely, suppose ‖u‖∗ ≤ v and ‖x‖ ≤ t⇐⇒ ‖− x/t‖ ≤ 1, we have

u′(−x/t) ≤ ‖u‖∗ ≤ v,

which implies u′x+ vt ≥ 0.

As a special case, the dual norm of Euclidean norm is also Euclidean norm. To see this, consider

sup{u′x | ‖x‖2 ≤ 1}.

By Cauchy-Schwarz inequality, we have u′x ≤ ‖z‖2‖x‖2 = ‖z‖2. Correspondingly, the second-order cone is
self-dual.

More generally, the dual of p-norm is the q-norm, where q satisfies 1/p+ 1/q = 1.

Lecture 9: Convex Analysis 9-6

Dual generalized inequalities

If K is a proper cone, then so its dual K∗, and moreover K∗∗ = K. The generalized inequality induced by
K∗: �K∗ is referred to as the dual of the generalized inequality �K .

The generalized inequality and its dual induce the following important relationship:

• x �K y if and only if λ′x ≤ λ′y for all λ �K∗ 0. This directly follows from the definition of dual cone:
y − x ∈ K if and only if λ′(y − x) ≥ 0 for any λ ∈ K∗.

• x ≺K y if and only if λ′x < λ′y for all λ �K∗ 0, and λ 6= 0.

9.3 Separating Hyperplane Theorem

We first state the following version of separating hyperplane theorem under a stronger assumption. The
distance between two sets C and D is defined as

dist(C,D) = inf{‖u− v‖2 | u ∈ C, v ∈ D}.

Theorem 9.3 (Strict Separating Hyperplane Theorem) Suppose C and D are two convex sets with
dist(C,D) > 0, and there exists c ∈ C, d ∈ D such that ‖c − d‖2 = dist(C,D). Then there exist a 6= 0 and
b such that a′x < b for all x ∈ C and a′x > b for all x ∈ D. The hyperplane {x | a′x = b} is called a
separating hyperplane for the sets C and D.

Proof: Let

a = d− c, b =
‖d‖22 − ‖c‖22

2
.

Consider the hyperplane

f(x) = a′x− b = (d− c)′x− ‖d‖
2
2 − ‖c‖22

2
= (d− c)′(x− (d+ c)/2).

We show that f is positive on D; the proof that f is negative on C is similar. Suppose, on the contrary,
there exists u ∈ D such that

f(u) = (d− c)′(u− (d+ c)/2) ≤ 0.

Note that

f(u) = (d− c)′(u− (d+ c)/2) = (d− c)′(u− d+ d− (d+ c)/2) = (d− c)′(u− d) + ‖d− c‖22/2.

Hence, f(u) ≤ 0, implies (d − c)′(u − d) < 0. Now consider the line segment θu + (1 − θ)d, for θ ∈ [0, 1].
Observe that

d

dθ
‖d+ θ(u− d)− c‖22

∣∣∣∣
θ=0

= 2(d− c)′(u− d) < 0.

That is, for small enough θ > 0, we have

‖d+ θ(u− d)− c‖2 < ‖d− c‖2,

which contradicts with the fact that d is the closest point to c in D.

As a special case, when D is a closed convex set and C = {x0} with x0 6∈ D, there exists ε > 0 such that the
(Euclidean) norm ball B(x0, ε) does not intersect with D, i.e., B(x0, ε)∩D = ∅. This implies dist(C,D) > 0.

Lecture 9: Convex Analysis 9-7

In addition, since D is closed, there exists d ∈ D such that ‖x0 − d‖2 = dist(C,D). By Theorem 9.3, there
exists a 6= 0, b such that a′x0 < b < a′x for all x ∈ D.

Recall the Farkas’ Lemma introduced in Lecture 4. We now provide an alternative proof based on the
separating hyperplane theorem.

Theorem 9.4 (Farkas’ Lemma) Let a1, ..., am and c be vectors in Rn. Then, exactly one of the following
alternatives holds:

1. There exists some p ≥ 0 in Rm such that

m∑
i=1

piai = c.

2. There exists some vector d ∈ Rn, such that

Ad =

 a′1
...
a′m

 d ≥ 0

and c′d < 0.

Proof: Clearly, when the first alternative holds, for any d ∈ Rn with Ad ≥ 0, we have

p′Ad = c′d ≥ 0,

and the second alternative cannot hold.

The nontrivial part is when the first alternative does not hold, i.e., we cannot find a vector p ≥ 0 in Rm such
that

m∑
i=1

piai = c.

In this case, the polyhedron cone generated by the conic hull of a1, ..., am: D = {
∑m
i=1 piai | p ≥ 0}. When

the first alternative is invalid, we know c 6∈ D. By Theorem 9.3, there exists d 6= 0 such that d′c < d′x for all
x ∈ D. In particular, since x = 0 ∈ D, we have d′c < 0. On the other hand, for any θ > 0, we have θai ∈ D
and θd′ai > d′c or equivalently d′ai > d′c/θ. It follows that

d′ai ≥ lim
θ→∞

d′c

θ
= 0, ∀i = 1, ...,m.

That is, Ad ≥ 0 and c′d < 0.

Using Theorem 9.3, we can further establish the following separating hyperplane theorem under weaker
condition.

Theorem 9.5 (Separating Hyperplane Theorem) Suppose C and D are two convex sets with C ∩D =
∅. Then there exist a 6= 0 and b such that a′x ≤ b for all x ∈ C and a′y ≥ b for all y ∈ D.

Proof: Consider the set
S = {y − x | x ∈ C, y ∈ D}.

Lecture 9: Convex Analysis 9-8

By C ∩D = ∅, we have 0 6∈ S and it can be easily verified that S is convex. The closure of set S, denoted as
cl(S), is the set of all limit points of convergent sequences in S. By definition, S ⊆ cl(S) and cl(S) is closed
(and convex if S is convex).

If 0 6∈ cl(S), then by Theorem 9.3, there exist a 6= 0, b such that a′0 < b < a′d for all d ∈ cl(S). This implies
a′(y − x) > 0 for any x ∈ C, y ∈ D and hence a′x ≤ b ≤ a′y for some b and for all x ∈ C, y ∈ D.

Suppose now that 0 ∈ cl(S). If S has empty interior, then it is contained in some hyperplane {z | a′z = b}
and since 0 ∈ cl(S), b = 0. As a result, for any d ∈ S, a′d = 0, i.e., a′y = a′x for any x ∈ C, y ∈ D, which is
a trivial separating hyperplane.

If S has nonempty interior, for any ε > 0, consider the set

S−ε = {d | B(d, ε) ⊆ S}.

That is, S−ε is the collection of points that have their ε-ball contained in S. It can be shown that S−ε is
convex given that S is convex and hence its closure cl(S−ε) is closed and convex. In addition, 0 6∈ cl(S−ε)
and hence by Theorem 9.3, there exists a(ε) such that

a(ε)′d > 0, ∀d ∈ S−ε.

We can always normalize a(ε) such that ‖a(ε)‖2 = 1. Now consider a decreasing sequence εn, n = 1, 2, ...
with limn→∞ εn = 0. Correspondingly, we have a(εn) with ‖a(εn)‖2 = 1 and

a(εn)′d > 0, ∀d ∈ S−εn .

Since a(εn) is a bounded sequence, there exists convergent subsequence, i.e., limk→∞ a(εnk
) → ā. For any

d ∈ int(S), there exists εni such that d ∈ Sεni
and

a′εnj
d > 0, ∀j ≥ i.

Hence, ā′d ≥ 0 for any d ∈ int(S). The inequality is preserved by taking limits under all convergent sequence
in int(S) and we have ā′d ≥ 0 for any d ∈ S, i.e., ā′x ≥ ā′y for all x ∈ C, y ∈ D.

A simple corollary of Theorem 9.5 is the so-called supporting hyperplane theorem. Let C be convex set
(assume that int(C) 6= ∅) and x0 be a point on its boundary, i.e., x0 ∈ cl(C), x0 6∈ int(C). Clearly,
int(C) ∩ {x0} = ∅. By Theorem 9.5, there exists a 6= 0 such that a′x0 ≥ a′x for any x ∈ int(C), which also
implies a′x0 ≥ a′x for any x ∈ C. The hyperplane {x | a′x = a′x0} is called the supporting hyperplane of C
at x0.

9.4 Convex Functions

Recall that a function f : Rn → R is convex if its domain domf is convex and for all x, y ∈ domf and
θ ∈ [0, 1], we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Below are several equivalent characterizations:

First-Order: A differential function f is convex if and only if for any x, y ∈ domf

f(x) +∇f(x)′(y − x) ≤ f(y).

Lecture 9: Convex Analysis 9-9

Second-Order: A twice-differential function f is convex if and only if for any x ∈ domf

∇2f(x) � 0.

Epigraph: The graph of a function f : Rn → R is defined as

{(x, f(x)) | x ∈ domf}.

The epigraph is defined as
epif = {(x, t) | x ∈ domf, f(x) ≤ t}.

The function f is convex if and only if its epigraph epif is a convex set.

Convexity with respect to generalized inequalities

Suppose K ⊆ Rm is a proper cone with associated generalized inequality �K . A mapping f : Rn → Rm that
maps a vector x ∈ Rn to a vector (f1(x), ..., fm(x)) ∈ Rm is K-convex if for all x, y and 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) �K θf(x) + (1− θ)f(y).

Nonnegative orthant: For K = Rm+ , the mapping f is Rm+ -convex is the same as requiring the function
fi(x) to be convex for all i = 1, ...,m.

Positive semi-definite cone: In this case, K = Sm+ , and f : Rn → Sm is a mapping from vectors
to symmetric matrices. The Sm+ -convexity is also called matrix convexity. To show f is Sm+ -convex, it is
equivalent to show that z′f(x)z is a convex function in x for any z ∈ Rm.

• f(X) = XX ′, where X ∈ Rn×m.

• f(X) = X−1, where X ∈ Sn++.

References

[BT97] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Springer, 1997.

[BV03] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2003.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 10: Convex Programs
Lecturer: Zhenyu Hu

We have specified in the first lecture a general convex programming problem of the form

min f(x)
s.t. gi(x) ≤ 0, i = 1, ..., l,

a′ix = bi, i = 1, ...,m,
(10.1)

where f(·), g1(·), ..., gl(·) are convex functions. The goal in this lecture is to introduce several important
special cases of it.

10.1 Quadratic Optimization

Quadratic program (QP):

min x′Px+ q′x+ r

s.t. Gx ≤ h,
Ax = b,

where P ∈ Sn+, G ∈ Rl×n, A ∈ Rm×n. When P = 0, the quadratic program reduces to linear program.

Markowitz portfolio optimization problem: One classic QP is the Markowitz portfolio optimization
problem. Consider n assets or stocks. Let r̃i be the random return of stock i and xi be the proportion of
budget invested in stock i, i = 1, ..., n. Suppose (r̃1, ..., r̃n) has mean (r1, ..., rn) and covariance Σ. It follows
that the return from the portfolio

∑n
i=1 r̃ixi has

E[

n∑
i=1

r̃ixi] =

n∑
i=1

rixi, var

(
n∑
i=1

r̃ixi

)
= x′Σx.

One seeks to find a portfolio x that gives at least an expected return of vmin and minimizes the risk:

min x′Σx

s.t. r′x ≥ vmin,

1′x = 1,

x ≥ 0.

Quadratically constrained quadratic program (QCQP):

min x′P0x+ q′0x+ r0

s.t. x′Pix+ q′ix+ ri ≤ 0, i = 1, ..., l,

Ax = b,

where Pi ∈ Sn+, i = 0, 1, ..., l.1

1Some literature would refer to QP and QCQP introduced here as convex QP and convex QCQP, with QP and QCQP
referring to the more general case where P or Pi not being required to be positive semi-definite.

10-1

Lecture 10: Convex Programs 10-2

For the portfolio optimization problem, if one seeks to maximize the expected return with a maximum
bearable risk σmax, then the problem is formulated as QCQP:

max r′x

s.t. x′Σx ≤ σmax,

1′x = 1,

x ≥ 0.

Second-order cone programming (SOCP):

min f ′x

s.t. ‖Aix+ bi‖2 ≤ c′ix+ di, i = 1, ..., l,

Fx = g,

where Ai ∈ Rni×n, F ∈ Rm×n. Note that when ci = 0, the above SOCP reduces to a QCQP: by squaring
both sides of the constraint ‖Aix+ bi‖2 ≤ di (note that one must have di ≥ 0), one has

x′A′iAix+ 2b′iAix+ b′ibi − d2i ≤ 0.

On the other hand, every QCQP can be formulated as an SOCP. First note that QCQP can always be
reformulated as one that has linear objective:

min t

s.t.
[
x′ t

] [P0 0
0 0

] [
x
t

]
+
[
q′0 −1

] [x
t

]
+ r0 ≤ 0,

[
x′ t

] [Pi 0
0 0

] [
x
t

]
+
[
q′i 0

] [x
t

]
+ ri ≤ 0, i = 1, ..., l,

[
A 0

] [x
t

]
= b.

It is then sufficient to show that the quadratic constraint of the form x′Px+ q′x+ r ≤ 0 can be reformulated
as a second-order cone constraint. Since P ∈ Sn+, by Cholesky factorization we have

P = A′A,

where A is some nonsingular lower triangular matrix. Note that

x′Px+ q′x+ r = x′A′Ax+
(1 + q′x+ r)2

4
− (1− q′x− r)2

4
≤ 0,

which is equivalent to ∥∥∥∥[(1 + q′x+ r)/2
Ax

]∥∥∥∥
2

≤ 1− q′x− r
2

.

We remark when ci 6= 0, there are some SOCP problems that cannot be formulated as QCQP (see home-
work),2 and hence SOCP is a more general class of problems than QCQP.

2More strictly speaking, second-order cone constraint can be reformulated as constraint of the form x′Px+ q′x+ r ≤ 0 plus
a linear constraint but the matrix P may not be positive semi-definite.

Lecture 10: Convex Programs 10-3

Robust optimization: As an application, consider the robust optimization problem studied in Lecture 6,
where we considered the constraint

n∑
j=1

(aij + δijzij)xj ≤ bi,

to be satisfied for all zi = (zi1, ..., zin) in the uncertainty setzi
∣∣∣∣∣∣
n∑
j=1

|zij | ≤ αin,−1 ≤ zij ≤ 1

 .

Instead of using l1-norm, we can also l2-norm to exclude the extreme values of zij by considering the
uncertainty set: {

zi
∣∣‖zi‖2 ≤ αi√n,−1 ≤ zij ≤ 1

}
.

The problem of finding the worst case realization is then an SOCP:

gi(x) =

n∑
j=1

aijxj + max
zi

n∑
j=1

δijxjzij

s.t. ‖zi‖2 ≤ αi
√
n

− 1 ≤ zij ≤ 1.

One good further reading for more applications of SOCP is [Alizadeh and Goldfarb 2003].

10.2 Conic Form Problems

The form (10.1) can be made even more general by using generalized inequalities:

min f0(x)

s.t. fi(x) �Ki 0, i = 1, ..., l,

Ax = b,

where f0 : Rn → R is convex, Ki ⊆ Rki are proper cones and fi : Rn → Rki are Ki-convex.

The simplest special case of the above form is when l = 1 and f0, f1 are affine function and affine mapping
(f1 is clearly K-convex for any cone K):

min c′x

s.t. Fx+ g �K 0,

Ax = b.

Problems of the above form are called conic form problems or conic programs. Clearly, when K is the
nonnegative orthant, the above problem is a linear program. Similar to LP, conic form problem of the
following form

min c′x

s.t. Ax = b,

x �K 0,

is referred to as a conic form problem in standard form.

Lecture 10: Convex Programs 10-4

Second-order cone programming (SOCP):

We have already seen that second-order cone problems are quadratic optimization problems. In fact, as the
name suggest, they can be expressed as conic form problems as follows:

min f ′x

s.t. − (Aix+ bi, c
′
ix+ di) �Ki

0, i = 1, ..., l,

Fx = g,

where
Ki =

{
(y, t) ∈ Rni+1 | ‖y‖2 ≤ t

}
,

is the second-order cone in Rni+1. Note that we can always introduce new variables yi = Aix+bi, ti = c′ix+di
such that requiring (yi, ti) ∈ Ki is the same as requiring (y1, t1, y2, t2, ..., yl, tl) ∈ K, where K = K1 ×K2 ×
...×Kl, which is also a cone.

Semidefinite programming (SDP):

When K = Sk+, the associated conic form problem is called a semidefinite program, and has the form

min c′x

s.t. x1F1 + x2F2 + ...+ xnFn +G � 0,

Ax = b,

where F1, ..., Fn, G ∈ Sk and A ∈ Rm×n. The inequality is also called linear matrix inequality (LMI). If the
matrices F1, ..., Fn, G are all diagonal, then the LMI reduces to k linear inequalities, and the SDP becomes
an LP.

It is often useful to think of x as a matrix instead of a vector. We use X ∈ Sn to denote the decision variables
that are arranged as a matrix. The standard form SDP is:

min tr(CX)

s.t. tr(AiX) = bi, i = 1, ...,m

X � 0,

where C,A1, ..., Am ∈ Sn. Note that

tr(CX) =

n∑
i=1

n∑
j=1

CijXij

is a linear function in Xij .

Cartesian product of semidefinite cones: Unlike LP, problems of the form, say,

min tr(C1X1) + tr(C2X2)

s.t. tr(AiX1) = bi, i = 1, ...,m,

tr(BjX2) = dj , j = 1, ..., l,

X1 � 0, X2 � 0

is not—strictly speaking—in standard form. One can, however, transform it to standard form by defining

X =

[
X1 Y
Y ′ X2

]

Lecture 10: Convex Programs 10-5

and introducing the constraints Y = 0. Note that the constraint Xij = 0 (in our case the index (i, j) such
that it falls in the block matrix Y) can be expressed as tr(EijX) = 0, where Eij is a symmetric matrix with
1 at entry (i, j) and (j, i), and zero elsewhere. The observation here is that, X1 � 0, X2 � 0 if and only if
X � 0 since [

x′ y′
] [X1 0

0′ X2

] [
x
y

]
= x′X1x+ y′X2y.

Similarly, consider the problem of the form

min c′x+ tr(CX)

s.t. Ax = b

tr(BjX) = dj , j = 1, ..., l,

x ≥ 0, X � 0,

where we have a Cartesian product of a nonnegative orthant cone and a semidefinite cone. Note that
nonnegative orthan cone can be viewed as the Cartesian product of n one-dimensional semidefinite cone.
Hence, we can transform the problem to standard form SDP via

X̃ =

[
diag(x) 0

0′ X

]
,

where

diag(x) =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

 .
SOCP: We first observe that a vector (x, t) ∈ Rn is in the second-order cone, i.e., ‖x‖2 ≤ t if and only if
the matrix

X =

[
tI x
x′ t

]
� 0.

To see this, note that the Schur complement3 of tI when t > 0 is

t− x′(tI)−1x = t− 1

t
x′x.

• If t = 0, X � 0 if and only if x = 0.

• If t > 0, X � 0 if and only if t− 1
tx
′x ≥ 0, which is equivalent to ‖x‖2 ≤ t.

As a result, an SOCP constraint ‖x‖2 ≤ t can be reformulated as

X � 0, tr(EiiX) = tr(En+1,n+1X), i = 1, ..., n, tr(EijX) = 0, i 6= j, i, j 6= n+ 1.

Moment problems: Consider the following problem of bounding the tail probability of a random variable
P(X ≥ a) with first two moments information E[X] = M1,E[X2] = M2. Let µ be a distribution function.

3Consider a matrix X ∈ Sn partitioned as

X =

[
A B
B′ C

]
.

If det(A) 6= 0, the Schur complement of A is defined as C − B′A−1B. Similarly, if det(C) 6= 0, the Schur complement of C is
A−BC−1B′.

Lecture 10: Convex Programs 10-6

The problem can be formulated as:

max
µ

∫ +∞

−∞
1{x≥a}dµ

s.t.

∫ +∞

−∞
1dµ = 1,∫ +∞

−∞
xdµ = M1,∫ +∞

−∞
x2dµ = M2,

where 1A is the indicator function of the set A. The above problem is an example of a semi-infinite
programming problem. Similar to LP, the dual of the above problem (think about the case when X is a
discrete random variable) is

min
y0,y1,y2

y0 +M1y1 +M2y2

s.t. y0 + xy1 + x2y2 ≥ 1, ∀x ≥ a,
y0 + xy1 + x2y2 ≥ 0, ∀x ∈ R.

We utilize the following important result in nonnegative polynomials: a polynomial g(x) =
∑2k
r=1 yrx

r ≥ 0
for all x ∈ R if and only a matrix X ∈ Sk+1, such that∑

i,j:i+j=r

Xij = yr, r = 0, ..., 2k, X � 0.

It follows that the set of constraints y0 + xy1 + x2y2 ≥ 0, ∀x ∈ R is equivalent to[
y0 y1/2
y1/2 y2

]
� 0.

In addition, by letting x = a+ t2, the set of constraints y0 + xy1 + x2y2 ≥ 1, ∀x ≥ a is equivalent to

y0 − 1 + (a+ t2)y1 + (a+ t2)2y2 = (y0 − 1 + y1a+ y2a
2) + (y1 + 2ay2)t2 + y2t

4 ≥ 0, ∀t ∈ R,

which is then reformulated as y0 − 1 + ay1 + a2y2 0 x02
0 x11 0
x20 2 y2

 � 0, and x02 + x11 + x20 = y1 + 2ay2.

More generally, the problem of finding an upper bound on tail probability with k moments information can
also be formulated as an SDP. Interested students are referred to [Bertsimas and Popescu 2005].

References

[Alizadeh and Goldfarb 2003] F. Alizadeh and D. Goldfarb, 2003, “Second-order cone programming”,
Mathematical Programming, 95(1), pp. 3–51.

[Bertsimas and Popescu 2005] D. Bertsimas and I. Popescu, 2005, “Optimal inequalities in probability
theory: a convex optimization approach”, SIAM Journal on Optimization, 15(3), pp. 780–804.

[BV03] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2003.

BDC6111: Introduction to Optimization Fall 2018, NUS

Lecture 11: Convex Duality
Lecturer: Zhenyu Hu

11.1 The Lagrange Dual Problem

We consider an optimization problem of the form

min f0(x)
s.t. fi(x) ≤ 0, i = 1, ..., l

hi(x) = 0, i = 1, ...,m.
x ∈ Rn.

(11.1)

We assume the domain D =
⋂l
i=1 domfi ∩

⋂m
i=1 domhi is nonempty and denote the optimal value of (11.1)

by p∗.

As in Lecture 4, we can define the Lagrangian as

L(x, λ, ν) = f0(x) +

l∑
i=1

λifi(x) +

m∑
i=1

νihi(x),

with λi ≥ 0, i = 1, ..., l.

The dual function is defined as
g(λ, ν) = inf

x∈D
L(x, λ, ν).

Note that g(λ, ν) is always concave even when (11.1) is not convex. In addition, we must have g(λ, ν) ≤ p∗

for λ ≥ 0 since for any feasible solution x̃ to (11.1), we have

g(λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃).

The Lagrange dual problem is then defined as

max g(λ, ν)
s.t. λ ≥ 0.

(11.2)

We refer to a pair (λ, ν) with λ ≥ 0 and (λ, ν) ∈ domg as dual feasible and denote the optimal value of (11.2)
by d∗.

The inequality g(λ, ν) ≤ p∗ immediately implies the weak duality:

d∗ = max
λ≥0,ν

g(λ, ν) ≤ p∗,

and the difference p∗ − d∗ is referred to as the duality gap.

Example 11.1 (Two-Way Partitioning Problem) Consider the problem

min x′Wx

s.t. x2i = 1, i = 1, ..., n,

11-1

Lecture 11: Convex Duality 11-2

with W ∈ Sn. It’s called two-way partitioning because a feasible x corresponds to a partition

{1, ..., n} = {i|xi = 1} ∪ {i|xi = −1}.

If i, j are in the same partition, it incurs a cost Wij; if they are in different partitions, it incurs a cost −Wij.

The Lagrangian for this problem can be written as

L(x, ν) = x′Wx+

n∑
i=1

νi(x
2
i − 1)

= x′(W + diag(ν))x− 1′ν.

The dual function is then

g(ν) =

{
− 1′ν, if W + diag(ν) � 0,

−∞, otherwise.

We can construct lower bound for the primal problem by, for example, taking ν = −λmin(W)1. In this case,
we must have

p∗ ≥ nλmin(W).

The dual problem in this case is

max − 1′ν

s.t. W + diag(ν) � 0,

which is an SDP and can be solved much more efficiently compared to the primal.

11.2 Duality Theory

Strong duality does not hold in general for problem (11.1). But if (11.1) is convex, i.e., of the form

min f0(x)
s.t. fi(x) ≤ 0, i = 1, ..., l

Ax = b.
x ∈ Rn,

(11.3)

with A ∈ Rm×n and f0, ..., fl being convex, then under certain conditions, we have strong duality.

One such condition is called Slater’s condition: there exists an x ∈ relintD such that

fi(x) < 0, i = 1, ..., l, Ax = b.

Theorem 11.2 (Strong Duality) Suppose problem (11.3) has an optimal value p∗ and Slater’s condition
holds. Then there exists a dual feasible (λ∗, ν∗) with g(λ∗, ν∗) = d∗ = p∗.

Geometric Interpretation

Consider the general problem (11.1) and define

G = {(f1(x), ..., fl(x), h1(x), ..., hm(x), f0(x)) ∈ Rl × Rm × R|x ∈ D}.

Lecture 11: Convex Duality 11-3

Note that when (11.1) is of the form
min f0(x)
s.t. x ≤ 0,

then G is simply the graph of the objective function f0(x). We further define

A = {(u, v, t) ∈ Rl × Rm × R|∃x ∈ D, fi(x) ≤ ui, i = 1, ..., l, hi(x) = vi, i = 1, ...,m, f0(x) ≤ t}.

Equivalently, we have A = G + (Rl+ × {0} × R+).

We can express the optimal value of the primal as

p∗ = inf{t|(0, 0, t) ∈ A}.

The dual function can be expressed as

g(λ, ν) = inf{(λ, ν, 1)′(u, v, t)|(u, v, t) ∈ A}

for λ ≥ 0. In particular, if the infimum is attained, then (λ, ν, 1)′(u, v, t) ≥ (λ, ν, 1)′(u∗, v∗, t∗), and the
hyperplane

{(u, v, t)|(λ, ν, 1)′(u, v, t) = (λ, ν, 1)′(u∗, v∗, t∗)}

defines a supporting hyperplane to A at (u∗, v∗, t∗).

Strong duality holds if and only if there exists a nonvertical supporting hyperplane to A at (0, 0, p∗).

Example 11.3 Consider the one-dimensional problem

min f0(x)
s.t. x ≤ 0,

with f0(x) = x2 + 2x+ 2.

𝑢

𝑡

(0, 𝑔 𝜆)

𝜆𝑢 + 𝑡 = 𝑔(𝜆)

In this case, G = {(u, t)|t = u2 + 2u+ 2} and A is illustrated as the shaded region in the figure above.

If, on the other hand, f0(x) is a non-convex function, then the situation in the following figure could arise.

Lecture 11: Convex Duality 11-4

𝑢

𝑡

(0, 𝑑∗)

𝜆∗𝑢 + 𝑡 = 𝑑∗
(0, 𝑝∗)

Proof of Strong Duality

To simplify, we assume D has nonempty interior, i.e., reintD = intD and A is full rank.

When f0, ..., fl are all convex, it is easy to show that the set

A = {(u, v, t) ∈ Rl × Rm × R|∃x ∈ D, fi(x) ≤ ui, i = 1, ..., l, v = Ax− b, f0(x) ≤ t}

is convex. We define a second set B as

B = {(0, 0, s) ∈ Rl × Rm × R|s < p∗}.

We show that A∩B = ∅. Indeed, suppose (u, v, t) ∈ A∩B. By (u, v, t) ∈ B, we know u = 0, v = 0 and t < p∗.
By (u, v, t) ∈ A, we know there exists x ∈ D such that fi(x) ≤ 0, i = 1, ..., l, Ax = b and f0(x) ≤ t < p∗,
which contradicts with the fact that p∗ is the minimum value for (11.3).

We can now invoke the separating hyperplane theorem: there exists (λ̃, ν̃, µ) 6= 0 and α such that

(u, v, t) ∈ A =⇒ (λ̃, ν̃, µ)′(u, v, t) ≥ α

and
(u, v, t) ∈ B =⇒ (λ̃, ν̃, µ)′(u, v, t) ≤ α

Since u and t are not bounded from above in A, from the first implication we have λ̃ ≥ 0 and µ ≥ 0. From
the second implication, we have µt ≤ α for any t < p∗, and hence we have µp∗ ≤ α. It follows that for any
x ∈ D

l∑
i=1

λ̃ifi(x) + ν̃′(Ax− b) + µf0(x) ≥ α ≥ µp∗.

If µ > 0, then dividing both sides of the above inequality by µ, we have

L(x, λ̃/µ, ν̃/µ) =

l∑
i=1

λ̃i
µ
fi(x) +

1

µ
ν̃′(Ax− b) + f0(x) ≥ p∗.

Hence, g(λ̃/µ, ν̃/µ) = infx∈D L(x, λ̃/µ, ν̃/µ) ≥ p∗. From weak duality, we know for any (λ, ν), λ ≥ 0, we
have g(λ, ν) ≤ p∗. Therefore, we must have g(λ̃/µ, ν̃/µ) = p∗—strong duality holds, and the dual optimal
solution is λ∗ = λ̃/µ, ν∗ = ν̃/µ.

Lecture 11: Convex Duality 11-5

We next show that if Slater’s condition is satisfied, then it is impossible for the normal vector of the separating
hyperplane (λ̃, ν̃, µ) to have µ = 0. Suppose on the contrary that µ = 0. We then have for any x ∈ D

l∑
i=1

λ̃ifi(x) + ν̃′(Ax− b) ≥ 0.

Let x̃ ∈ intD be the point that satisfies the Slater’s condition, i.e., fi(x̃) < 0, i = 1, ..., l and Ax̃ = b. We
then have

l∑
i=1

λ̃ifi(x̃) ≥ 0,

which can only happen for λ̃ = 0. As a result, we have for ν̃ 6= 0 and any x ∈ D,

ν̃′(Ax− b) ≥ 0, and ν̃′(Ax̃− b) = (ν̃′A)x̃− ν′b = 0.

Since A is full rank and ν̃ 6= 0, it follows that ν̃′A 6= 0. Let ν̃′A = (ã1, ..., ãn), then we have
∑n
i=1 ãix̃i−ν′b =

0. Clearly, by x̃ ∈ intD, we can find ε ∈ Rn such that x̃+ ε ∈ D and

ν̃′(A(x̃+ ε)− b) =

n∑
i=1

ãi(x̃i + εi)− ν′b < 0.

Complementary Slackness and KKT Conditions

Suppose the primal and dual optimal values are attained and equal, and let x∗ and (λ∗, ν∗) be the primal
and dual optimal solutions. We then have

f0(x∗) =g(λ∗, ν∗)

= inf
x∈D

(
f0(x) +

l∑
i=1

λ∗i fi(x) +

m∑
i=1

ν∗i hi(x)

)

≤f0(x∗) +

l∑
i=1

λ∗i fi(x
∗) +

m∑
i=1

ν∗i hi(x
∗)

≤f0(x∗).

The above chain of inequalities implies the last two inequalities hold with equality. We can conclude from
this that if x∗ and (λ∗, ν∗) are the primal and dual optimal solutions and strong duality holds, then

• the primal optimal solution x∗ also minimizes L(x, λ∗, ν∗);

•
∑l
i=1 λ

∗
i fi(x

∗) = 0 =⇒ λ∗i fi(x
∗) = 0, i = 1, ..., l.

As in LP, the condition λ∗i fi(x
∗) = 0 is referred to as the complementary slackness condition.

Conversely, if we have a pair of primal and dual feasible solutions x∗ and (λ∗, ν∗) such that

L(x∗, λ∗, ν∗) = inf
x∈D

L(x, λ∗, ν∗), λ∗i fi(x
∗) = 0, i = 1, ..., l,

Lecture 11: Convex Duality 11-6

then they must also be optimal with a duality gap zero. This is because

g(λ∗, ν∗)

= inf
x∈D

L(x, λ∗, ν∗)

=f0(x∗) +

l∑
i=1

λ∗i fi(x
∗) +

m∑
i=1

ν∗i hi(x
∗)

=f0(x∗).

In particular when the problem is convex and differentiable, i.e., fi, i = 0, ..., l are convex and hi are affine,
then the condition

L(x∗, λ∗, ν∗) = inf
x∈D

L(x, λ∗, ν∗),

is equivalent as

∇f0(x∗) +

l∑
i=1

λ∗i∇fi(x∗) +

m∑
i=1

ν∗i∇hi(x∗) = ∇f0(x∗) +

l∑
i=1

λ∗i∇fi(x∗) +A′ν∗ = 0.

Therefore, when Slater’s condition holds, the points x∗ and (λ∗, ν∗) are primal and dual optimal if and only
if they satisfy

fi(x
∗) ≤ 0, i = 1, ..., l

hi(x
∗) = 0, i = 1, ...,m, (Ax∗ = b)

λ∗ ≥ 0

λ∗i fi(x
∗) = 0, i = 1, ..., l

∇f0(x∗) +

l∑
i=1

λ∗i∇fi(x∗) +

m∑
i=1

ν∗i∇hi(x∗) = 0, (∇f0(x∗) +

l∑
i=1

λ∗i∇fi(x∗) +A′ν∗ = 0).

The above set of conditions is referred to as Karush-Kuhn-Tucker (KKT) conditions.

Example 11.4 Consider the problem

min
1

2
x′Px+ q′x+ r

s.t. Ax = b,

where P ∈ Sn+. The KKT conditions for this problem are

Ax∗ = b

Px∗ + q +A′ν∗ = 0,

which can be written as [
P A′

A 0

] [
x∗

ν∗

]
=

[
−q
b

]
.

Solving this system of m+n linear equations with m+n variables gives the optimal primal and dual variables.

Lecture 11: Convex Duality 11-7

11.3 Generalized Inequalities

We consider an optimization problem with generalized inequality constraints:

p∗ = min f0(x)
s.t. fi(x) �Ki

0, i = 1, ..., l
hi(x) = 0, i = 1, ...,m,
x ∈ Rn,

(11.4)

where Ki ⊆ Rki are proper cones, and fi : Rn → Rki are Ki-convex.

For generalized inequality fi(x) �Ki
0, we associate a Lagrange multiplier vector λi ∈ Rki and define the

Lagrangian as

L(x, λ, ν) = f0(x) +

l∑
i=1

λ′ifi(x) +

m∑
i=1

νihi(x),

and the dual function
g(λ, ν) = inf

x∈D
L(x, λ, ν).

To qualify as a relaxation or valid lower bound, we require λ′ifi(x) ≤ 0 for any fi(x) with fi(x) �Ki
0. By

definition of dual cone, this is equivalent as λi ∈ K∗i or λi �K∗
i

0. The Lagrange dual problem is

d∗ = max g(λ, ν)
s.t. λi �K∗

i
0.

(11.5)

It is easy to show that weak duality still holds: d∗ ≤ p∗.

Example 11.5 (Semidefinite Program) Consider a semidefinite program of the form

min c′x

s.t. x1F1 + ...+ xnFn +G � 0,

where F1, ..., Fn, G ∈ Sk. Note that here we have one generalized inequality: f1(x) �K1 0 with f1 being a
linear function and K1 = Sk+. We associate this constraint with a dual variable Z ∈ Sk, so the Lagrangian is

L(x, Z) = c′x+ tr((x1F1 + ...+ xnFn +G)Z) = (c1 + tr(F1Z))x1 + ...+ (cn + tr(FnZ))xn + tr(GZ).

The dual function is then

g(Z) =

{
tr(GZ), if ci + tr(FiZ) = 0, i = 1, ..., n,

−∞, otherwise.

The dual problem is
max tr(GZ)
s.t. ci + tr(FiZ) = 0, i = 1, ..., n

Z � 0.

Example 11.6 (Standard Form Cone Program) Consider a cone program in standard form

min c′x

s.t. Ax = b,

x �K 0.

Lecture 11: Convex Duality 11-8

The Lagrangian is
L(x, λ, ν) = (c′ − λ′ + ν′A)x− ν′b.

The dual function is then

g(λ, ν) =

{
− ν′b, if c′ − λ′ + ν′A = 0, i = 1, ..., n,

−∞, otherwise.

The dual problem is
max −ν′b
s.t. −λ′ + ν′A = −c′,

λ �K∗ 0.

By letting p′ = −ν′ and eliminating the slack variable λ, we then have the equivalent dual problem

max p′b
s.t. p′A �K∗ c′,

which is in the same form as the dual problem we derived for the standard form LP.

Strong duality for problem (11.4) holds when hi(x), i = 1, ...,m are affine, fi(x) is Ki-convex, f0(x) is convex
and a generalized version of Slater’s condition holds: there exists an x ∈ relintD such that Ax = b and
fi(x) ≺Ki

0.

References

[BV03] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2003.

