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Abstract
Accurate carbon price forecasting can better allocate carbon emissions and thus ensure a
balance between economic development and potential climate impacts. In this paper, we
propose a new two-stage framework based on processes of decomposition and re-estimation
to forecast prices across international carbon markets. We focus on the Emissions Trading
System (ETS) in the EU, as well as the five main pilot schemes in China, spanning the period
from May 2014 to January 2022. In this way, the raw carbon prices are first separated into
multiple sub-factors and then reconstructed into factors of ‘trend’ and ‘period’ with the use
of Singular Spectrum Analysis (SSA). Once the subsequences have been thus decomposed,
we further apply six machine learning and deep learning methods, allowing the data to be
assembled and thus facilitating the prediction of the final carbon price values. We find that
from amongst these machine learning models, the Support vector regression (SSA-SVR) and
Least squares support vector regression (SSA-LSSVR) stand out in terms of performance for
the prediction of carbon prices in both the European ETS and equivalent models in China.
Another interesting finding to come out of our experiments is that the sophisticated algorithms
are far from being the best performing models in the prediction of carbon prices. Even after
accounting for the impacts of the COVID-19 pandemic and other macro-economic variables,
as well as the prices of other energy sources, our framework still works effectively.

Keywords Carbon price prediction · Carbon emission · COVID-19 · Singular spectrum
analysis · Ensemble learning method

1 Introduction

Since the signing of the 2015 Paris Agreement, international attention has shifted to focus
on the potentially devastating impact of global climate warming, with the agreement being
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focused on mitigating the consequences of climate change by reducing greenhouse gas emis-
sions. Greenhouse gases are widely regarded as the major culprit of global warming, which
poses a great threat not just to the survival of human society, but also its continued economic
development. The establishment of a sound carbon allowance trading system is commonly
viewed as an effective and low-cost instrument which would reduce carbon emissions and
control the excessive rising of global temperatures (Bauer et al., 2020). To regulate these
carbon emissions, companies which generate more greenhouse gases as a result of their
industrial activities would need to buy emission quotas in a public trading system, while
those with a higher carbon emission allowance who do not exceed their quota would also be
able to sell their emission allowance to other companies. Carbon would therefore become a
fundamental trading asset with its prices fluctuating from time to time, as in the current global
stock market. An effective pricing model should therefore be the basis of such a trading sys-
tem. An accurate estimation of carbon prices would thus provide an invaluable insight into
the carbon markets, which would be helpful for companies to manage their ‘climate costs’.
With this in mind, this study proposes a new ensemble framework for international carbon
markets, based on data from the European Union (EU) and China, which are currently the
principal global carbon trading markets.

As a crucial indicator of market supply and demand, the price of carbon is affected by a
lot of drivers including national or international allowances, restrictions in place, as well as
local/global energy prices and other macroeconomic conditions (Byun&Cho, 2013; Nguyen
et al., 2021; Zhao et al., 2018). Fluctuating carbon prices may affect the running costs of
a company and therefore its operational strategy, since extreme volatility in carbon prices
can be risky and create uncertainty in production activities. Hence, effective carbon price
forecasting will not only help manage the market risk but also contribute to broader political
objectives to tackle climate change.

The currently extensive carbon forecasting methods can be groups to three streams: tradi-
tional econometric models, such as GARCH (Liu & Huang, 2021), ARMA/ARMIA (Conejo
et al., 2005; Sun & Zhang, 2018; Zhou et al., 2006), machine learning models such as neu-
ral networks (Chiu et al., 2020; Mayer et al., 2015; Yu et al., 2014; Zhu et al., 2017), and
ensemble models (Lu et al., 2020; Safari & Davallou, 2018; Zhu et al., 2018b). Overall, the
integrated model, with its two-stage framework of decomposition-prediction, has come to
dominate the field of carbon price forecasting. Given that carbon prices are non-linear and
non-stationary, taken alongside the overfitting and local optimization problems of machine
learning, many studies apply a combination of econometric models to predict the linear part
of the decomposition, and machine learning models to predict the non-linear part (Zhang &
Wu, 2022; Zhang et al., 2018; Zhu &Wei, 2013; Zhu et al., 2018a, 2018b). While so far there
has been an abundance of studies to explore carbon price forecasting, it is currently difficult
to guarantee that any single algorithm proposed in the literature will consistently outperform
others all the time. The optimal prediction model may change as the data sample varies.
A two-step technique is widely used in the existing literature, specifically, the process of
decomposition followed by a single learning method, in an effort to more accurately predict
the price outcome of a given set of data. However, the data distribution characteristics of
the different sub-series are distinct and so the prediction results may not always be optimal
when using the same approach. This paper therefore proposes a new two-step framework
for predicting international carbon prices which can serve as a reference for better-informed
investment decisions and climate governance in both China and the EU.

More precisely, we first decompose the carbon prices into factors based on trend and
period, using the Singular Spectrum Analysis (SSA) approach. The second stage is then to
find the best-performing model from among the numerous available prediction models for
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the factors of trend and period. We select four generally best-performing learning models
and two common deep learning models, Recurrent Neural Network (RNN) and Long short-
term memory (LSTM). We then ensemble the results for each sub-factor using the best
performing prediction model to obtain the final prediction values for the carbon prices. The
advantages of this type of framework are that we do not assume in advance that any learning
model will perform better in terms of prediction, but instead try all algorithms which have
performed historically well in previous experiments. This openness allows our results to be
better adapted to the characteristics of the data distribution of the carbon price series. Such
data-driven algorithms are more appropriate and applicable to a wider variety of scenarios.
The final prediction results are equivalent to incorporating the optimal prediction values
of each decomposition sequence, and therefore clearly outperform the prediction results
of one single algorithm. Moreover, the framework in this paper is easily interpretable and
extendable, allowing for the inclusion of more feature variables, to further improve the
prediction efficiency of the algorithm.

Our study is closely related to the literature that applies the structure of first decomposing
the raw carbon price series and then inputting the results into machine learning models, for
instance Li et al. (2021), Chai et al. (2021), Hao et al. (2020) and Lu et al. (2020). Chai
et al. (2021) explore China’s carbon price prediction using Variational Mode Decomposition
(VMD) and others, and found it to be limited by boundary effects and sudden signals (Li et al.,
2021; Wang et al., 2017). Zhang andWu (2022) propose a hybrid forecasting method for car-
bon price in the EU ETS, which incorporates the empirical mode decomposition (EMD) and
the integration of ARMAs and LSSVMs. Their work shows that this kind of model integra-
tion does improve the prediction efficiency of algorithms. Regarding the decomposition step,
the popular methods include Empirical Mode Decomposition (EMD) or VMD (Huang, et al.,
1998; Zhang et al., 2018; Zhu et al, 2018a), as well as their extensions, such as Multivariate
Empirical Mode Decomposition (MEMD) (He et al., 2017), Ensemble EMD (EEMD) (Wu
et al., 2019), and Complementary Ensemble Empirical Mode Decomposition (CEEMD) (Li
et al., 2021). Zhu (2012) claims that the widely used EMD methods are inherently weak at
distinguishing noise terms. In addition, these decomposition methods severely restrict data
distribution. The SSA approach gives the best performance in denoising, with the help of
its distribution features for subsequences (Hassani, 2007; Zhang et al., 2019). Compared
to EMD, SSA can be applied to a wider range of data generating processes, regardless of
whether they are linear or nonlinear, stable or unstable, and it also does not require primary
functions to be pre-set. More importantly, the SSA applies singular values as a criterion, and
its ability to extract the main factors in a given sequence is more effective and intuitive than
the alternatives (Vautard et al., 1992).

The second contribution of our paper is that we explore carbon pricing from two different
carbon trading markets, namely the European ETS and five main carbon trading pilots in
China, including the key markets of Beijing, Shanghai, Guangdong, Shenzhen and Hubei.
The EU Emissions Trading System (EU ETS), which was established as early as 2005, is
today the largest carbon emissions trading market in the world (Aspinall et al., 2021; Dutta,
2018; Veith et al., 2009). It is well developed, andmany private companies, acting as investors
in Europe, hedge carbon in this market. China’s carbon trading markets are relatively young,
with pilot schemes having only been established in a few of the country’s larger cities since
2013, with a national carbon trading market being set up in 2021. The eight pilot schemes are
based in Beijing, Shanghai, Guangdong, Shenzhen, Hubei, Chongqing, Fujian and Tianjin.
The cumulative trading volume of carbon emissions is about 371 million tons, as of the end
of 2021. In fact, China produces the highest amount of carbon emissions, accounting for
about 30% of the global market in 2018, according to the World Bank. The Chinese carbon
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market is therefore of great importance for the country’s climate change governance and can
also act as a reference for the rest of the world (Leippold et al., 2022; Liu & Sun, 2021; Wang
et al., 2019).

Though several studies (Chai et al., 2021; Hao et al., 2020; Li et al., 2021) have discussed
carbon prices in either the EU ETS or China, little work comparing international carbon
pricing predictions between the EU and China has been done thus far. The environmen-
tal challenges, regulatory concerns and policy frameworks in Europe and China are very
different, and it is therefore necessary to compare the pricing of these two representative car-
bon trading systems separately, in order to more thoroughly address global climate change.
Hao et al. (2020) show that there are large discrepancies between EU carbon price forecast
errors and China’s, with their use of a hybrid model containing both feature selection and a
multi-objective optimization algorithm.

Our final contribution is in our discussion of the impacts of COVID-19 on global carbon
prices, as well as the impact of other key macro-economic variables and the prices of other
energy sources.

While a substantial part of the literature is devoted to the social and economic impacts
of the unprecedented COVID-19 pandemic, mostly focused on the influence on financial
markets, e.g., Akhtaruzzaman et al. (2021a, 2021b, 2022), Boubaker et al. (2022), Cheng
and Yen (2020), Hong et al. (2021), Mazur et al. (2020), Pandey and Kumari (2021), Zhang
andMao (2022), Batten et al. (2022), Hassan et al., (2021, 2022) and Choudhury et al. (2022).
Akhtaruzzaman et al. (2021a) suggest that there was increased financial contagion during
COVID-19. Cheng andYen (2020) discuss the significant predictive effects of new confirmed
cases in the US on S&P 500’s return. Hassan et al., (2021, 2022) explore the relative safety
of investing in gold during the pandemic. Furthermore, some studies have started to focus
on the impacts of unexpected external shocks such as the Russia-Ukraine conflict on the
financial markets, for instance, Boungou and Yatié (2022). However, these current studies
only discuss the impacts of these types of sudden shock on financial markets like the gold
future markets or stock markets, with no analysis given for carbon prices, though the impact
on the energymarket is evident. Nevertheless, it is already clear that the distribution of carbon
emissions changed significantly during the pandemic, when a large number of manufacturers
were forced to shut down production. To test if this is indeed the case, our sample spans
the period from May 2014 to January 2022, thus allowing for the analysis of the impacts
of a lasting event such as the current global public health crisis. We compare the predictive
performance of our model with and without the pandemic variable (in this case, the number
of new confirmed cases per day) and find that its predictive power is slightly different but not
significantly. We can thus conclude that our model is able to capture the various influences
of the event.

Furthermore, we discuss whether our results change when taking more macro-economic
variables into consideration. In the existing literature on carbon price forecasting, little atten-
tion has been paid to the impact of macro variables, or other energy prices such as oil prices,
on carbon price forecasting. In fact, all these factors may potentially influence the supply and
demand of carbon emissions. Thus, in our extension analysis, we include macro-economic
variables such as GDP growth, oil price and coal price. It is found that the predictive effect
of our model is somewhat improved with the incorporation of these macro variables. At this
point it is worth mentioning the 26th Conference of the Parties (COP 26), an important meet-
ing which took place in 2021. The Glasgow Climate Pact, negotiated during COP26, set out a
number of new agreements on climate change, in an attempt to maintain the targets set by the
Paris Agreement and further encourage the global transition to lower carbon emissions. These
new agreements stress the urgency of taking immediate action, committing to cutting global
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CO2 emissions by 45% by 2030, and appeal to all countries to deliver more rigorous plans
to reduce emissions. Undoubtedly, this pact places force on the cutting of carbon emissions.
Carbon allowances might be referred to as a scarce resource and be allocated differently in
distinct industries. However, limited research data available at the time of writing the current
paper prevent an in-depth analysis of the impact of this pact on the carbon allowance price
market, but it is a matter worth discussing in the future.

Given our new hybrid machine learning framework, we predict the international carbon
prices in China and EU spanning from May 2014 to January 2022, with a total of 2011
daily observations. Overall, we find that the classic machine learning methods of SVR and
LSSVR outperform other models in forecasting the subsequences of carbon prices, while
more complicated deep learning methods turn out to not be the best forecasting algorithm.
After considering the impacts of the COVID-19 pandemic (using the number of new cases
per day as a proxy) and other macro-state variables such as Term Spread, Oil price and Coal
price, our method remains valid.

The remainder of this paper is organized as follows. Section 2 shows themethodologyused,
followed by a description of the data in Sect. 3. Sections 4 and 5 present the main empirical
analysis, and an extended analysis. The last section provides with some implications for
future work.

2 Methodology

This section introduces the structure of our new hybrid prediction approach, including a
two-stage module, consisting of data preprocessing and forecasting.

2.1 Data preprocessing

SSA, first proposed by Broomhead and King (1986), has been a method of decomposition
and denoising of time series data. SSA is a non-parametric method for both stationary and
non-stationary time series (Hassani & Zhigljavsky, 2009), decomposing and reconstructing
the time series into trend, periodic and noise terms.More precisely, it includes two stageswith
two small steps for each stage (Hassani, 2007). For more details about SSA decomposition,
please see the work of Golyandina and Korobeynikov (2014).

2.1.1 Stage one: decomposition

Step 1: Window embedding

Consider a time seriesX = (x1, x2, . . . , xT ). Let the integer L(1 < L < T ) be themoving
window length. Transform X into T − L + 1 vectors:

Xi = (xi , xi+1, . . . , xi+L−1)
T , i = 1, 2, . . . , T − L + 1 (1)

Then the trajectory matrix X of X can be defined as:

X = [
X1, X2, . . . , XT−L+1

] =

⎡

⎢⎢⎢
⎣

x1 x2 · · · xT−L+1

x2 x3 · · · xT−L+2
...

...
. . .

...

xL xL+1 · · · xT

⎤

⎥⎥⎥
⎦

L×(T−L+1)

(2)
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Step 2: Singular Value Decomposition (SVD)

The eigen triples (si ,Ui ,Vi ) of matrix XX T are calculated by SVD. Denote Ui and Vi as the
i th left and right eigenvectors of XX T . Let d = rank(X ). Then the trajectory matrix can be
decomposed as:

X =
d∑

i=1

Xi = siUi V
T
i (3)

where si is the i th singular value of X .

2.1.2 Stage two: reconstruction

Step 1: Grouping

Group the indices from 1 to d into M disjoint subsets L1, L2, . . . , LM . Accordingly, divide
the eigenvalues λ1, λ2, . . . , λL into M groups, that is λL1 , λL2 , . . . , λLM . We thus have:

X =
M∑

i=1
XLi (4)

Step 2: Diagonal averaging

In this step, we transform each XLi into a new sequence. Define z as the element in each
matrix XLi (1 ≤ i ≤ M) and z∗ik as the value after diagonal averaging in each XLi , that is:

z∗ik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
n+1

n+1∑

m=1
zm,n−m+2 0 ≤ n < L − 1

1
L

L∑

m=1
zm,n−m+2 L − 1 ≤ n < T − L

1
T−n

T−n∑

m=n−T+L+1
zm,n−m+2 T − L ≤ n ≤ T

(5)

By this method, each matrix corresponds to a subsequence. This means that we perform

diagonal averaging in matrix XLi (1 ≤ i ≤ M) to get sLi =
(
z∗i1 , z

∗
i2
, . . . , z∗iT

)
(1 ≤ i ≤ M).

Finally, the original time series X = (x1, x2, . . . , xT ) is decomposed into a sum of M
subsequences:

X =
M∑

i=1
sLi (6)

Denote the sum of variance contribution of all singular values asC(L) = ∑L
i=1 si and the

threshold to distinguish the main part and the noise term as μ. Let k be an integer between
1 and L. If c(k−1)

c(L)
< μ and C(k)

C(L)
≥ μ, the sequences corresponding to the first k largest

singular values are considered the ‘main part’ and the remaining part are the ‘noise term’.
The largest singular value is usually understood to reflect the trend of the time series. In this
paper, the sequence corresponding to the largest singular value is considered the trend term,
and the sum of the remaining part of the first k sequences is considered the periodic term.
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2.2 Forecastingmodule

This part introduces six machine learning models used in this study, namely SVR, LSSVR,
RF, XGB, RNN, and LSTM.

(1) Support Vector Regression

Support Vector Machine (SVM) is a good classifier when dealing with binary outcomes, and
it can be extended to regression problems to better fit the continuous response variables. Its
earliest study was made by Vapnik and Lerner (1963) and its corresponding introduction was
completed by Vapnik (1999). In this paper, we use Support Vector Regression (SVR) for a
continuous outcome (i.e., the carbon price) instead of the binary form of SVM.

SVRworks for both linear and nonlinear relations between response variables and feature
variables. For the non-linear data distribution, SVR maps the input space into a high-
dimensional feature space. The SVR model is expressed as

f (x) = wTϕ(x) + b (7)

where w and b are the weight vector and interception respectively, and ϕ is a mapping func-
tion. The model collapses to the linear relations when ϕ(x) is x . However, using SVR is
a time-consuming process when handling big samples. The alternative LSSVM was pro-
posed by Suykens and Vandewalle (1999) to overcome these disadvantages, which replaces
the former’s quadratic programming with linear conditions. Similarly, LSSVM’s regression
framework is defined as least squares support vector regression (LSSVR).

Consider a training data set {(xi , yi )}, i = 1, 2, . . . , N . LSSVR can be expressed as the
following problem:

min J (w, ε) = 1
2

(
wTw + c

N∑

i=1
ε2i

)
(8)

subject to

yi = wTϕ(xi ) + b + εi , i = 1, 2, . . . , N (9)

where c is the penalty parameter, εi is the approximation error. Denote λi as the Lagrange
multiplier, then the Lagrange function can be easily obtained:

L(w, ε, ζ, b) = J (w, ε) −
N∑

i=1
ζi (w

Tϕ(xi ) + b + εi − yi ) (10)

Using the KKT conditions and eliminating w and εi , we obtain following expressions:
[
b
λ

]
=

[
0 I T1
I1 K + c−1 I

][
0
y

]
(11)

where λ = (λ1, λ2, . . . , λN ), I1 is a unit vector consists of ones and I is an identity matrix.
Finally, the LSSVR model is derived as follows:

f (x) =
N∑

i=1
ζi K (x, xi ) + b, (12)

where K (x, xi ) is the kernel function.

(2) Random forest
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Random forest (RF), an ensemble learningmethod based on a decision tree, was first properly
introduced by Breiman (2001). For regression relations, its output is the average of all the
decision trees’ outputs. Consider a RF model composed of a number of N decision trees.
Define Tj (x), j = 1, 2, . . . , N as the output of the j th decision tree, so the RF model can
be expressed in the following form:

f (x) = 1
N

N∑

j=1
Tj (x). (13)

(3) XGBoost

XGBoost (XGB), a learning method based on the gradient tree boosting, was first proposed
by Chen and Guestrin (2016). Boosting is an ensemble algorithm that integrates the multiple
weak learning models into a strong learning model, as

ŷi =
M∑

m=1
fm(xi ) (14)

where fm(·) is a weak learningmodel and M represents the number of weak learningmodels.
It will be a tree-based boosting process if all weak learning models are decision trees.

The objective of XGB is to minimize the regularized objective function L as

L =
N∑

i=1
l
(
ŷi , yi

) +
M∑

m=1
�( fm), (15)

where �( fm) = γ Tm + 1
2κ

∑T
j=1 ω2

m, j represents the penalty term for the complexity of the
mth tree;γ and κ represents hyperparameters. Tm indicates the number of nodes in the mth
tree. ωm, j is the value of the jth node in the mth tree.

It is difficult to minimize the regularized objective function by gradient descend method
to obtain continuous results, so an additive method is adopted to change the regularized
objective function into

L =
N∑

i=1
l
(
ŷ(t−1)
i + ft (xi ), yi

)
+ �( ft ), (16)

where ŷ(t−1)
i represents the output at the (t − 1)th iteration. ft is the tree at the tth iteration.

(4) Recurrent Neural Network

Recurrent Neural Network (RNN) was first proposed by Elman (1991). RNNs have been
widely used for Natural Language Processing (NLP) and time series forecasting over the
past few years. Unlike standard neural networks, RNNs allow for the passing the output of
hidden layer cells as the input into the next cells. This recurrent structure enables RNNs to
construct a memory, which makes RNNs a powerful model to deal with sequential data.

Denote x = (x1, x2, . . . , xT ) as a sequence of input, then the hidden state h at time t can
be expressed as

ht =
{

0,
f (wxhxt + whhht−1),

t = 0
t ≥ 1

, (17)

where f represents an activation function, wxh represents the weight matrix between the
input layer and hidden layer, and whh represents the weight matrix between the hidden layer
at any given time and another hidden layer at an adjacent time.

123



Annals of Operations Research

Finally, the output of RNN at time t can be expressed as

y = wyhht , (18)

where wyh represents the weight matrix between output y and hidden layer h.

(5) Long short-term memory

Long short-term memory (LSTM), proposed by Hochreiter and Schmidhuber (1997), is an
improved version of RNN which overcomes the long-term dependencies problem. In an
LSTM cell structure, the forget gate ft , the input gate it , the output gate ot and the cell state
candidate c̃t are given by (Li et al., 2023):

ft = σ
(
wx f xt + wh f ht−1 + b f

)
(19)

it = σ(wxi xt + whi ht−1 + bi ) (20)

ot = σ(wxoxt + whoht−1 + bo) (21)

c̃t = tanh(wxcxt + whcht−1 + bc) (22)

wherew represents the weight matrix, σ is a sigmoid function and b represents the bias term.
Finally, the cell state and the hidden state at the next time step are given by:

ct = ct−1 · ft + it · c̃t (23)

ht = tanh(ct ) · ot (24)

2.3 Framework of the proposed approach

Our framework, shown in Fig. 1, can be explained as a three-step process:

(1) Original series decomposition we apply the Singular Spectrum Analysis (SSA) to
decompose the original carbon prices into several subsequences.

(2) Subsequences reconstruction the subsequence with the largest singular value is consid-
ered the ‘trend term’. The remaining subsequences are divided into ‘period term’ and
‘noise term’ by a threshold of cumulative variance contribution rates.

(3) Forecasting we compare the results of six aforementioned machine learning models by
using the trend term and the periodic term after reconstruction, and the best ones are
then selected to be the forecasting results of our subsequences. Then we use the simple
sum of the predicted subsequences (trend and periodic terms) as the final predictor of
carbon prices.

3 Data and predictive features

This section describes the data for analysis and the definitions of predictive features.
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Fig. 1 The framework of our new hybrid machine learning approach. The blue dashed box top left shows the
decomposition process of the original carbon valence sequence. The orange dashed box top right shows the
decomposed sequences. The green dashed box bottom left gives the machine learning models used to predict
the decomposed sequences in the second step. Themiddle part gives the complete flow of the algorithm. (Color
figure online)

3.1 Data description and preparation

We explore the price forecasting in the largest international carbon trading markets, i.e.
those of the EU and China. More precisely, we use the average transaction price of carbon
emission allowances in China. There are eight pilot trading markets which have been set
up in China since 2013, namely Beijing (BEA), Shanghai (SHEA), Guangdong (GDEA),
Shenzhen (SZA), Hubei (HBEA), Chongqing (CQEA), Tianjin (TJEA), and Fujian (FJEA).
We filter out any pilots with small carbon trading turnovers and with more than 50%missing
values, retaining five Chinese pilots. These are the BEA, SHEA, GDEA, SZA and HBEA
carbon pilots, with the total trading volumes of carbon futures accounting for over 90% of
the country’s overall volume. In this paper, we also explore the carbon market in EU, i.e.
the European Union Allowance (EUA) futures prices, taken from ICE (the Intercontinental
Exchange). For all carbon transaction prices, we select the daily data for the period from
May 2014 to January 2022, giving a total of 2011 observations. Of these, 1810 observations
are inputted into the training model. The remaining 201 observations are used to valid the
performance on a out-of-time sample. Since we are interested in the prediction of time series
of carbon prices, ones which include extreme changes, we do not winsorize our variables.
Table 8 in the Appendix shows all variable definitions and data sources in our empirical
analysis.
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Table 1 describes the price series of six carbon markets in the EU and China. The average
carbon price in the EUA ETS is about 18.60 Euro/t, with a standard deviation of 16.51. A
high standard deviation usually represents an elevated risk. In China, the BEA holds the
highest carbon prices, with the largest standard deviation being 17.22 across all pilots. The
cumulative transaction volume of BEA in 2022 is also the largest, with about 3706.6 million
Chinese Yuan, followed by HBEA with 1866.8 million Chinese Yuan. The other four pilots
in China share a similar mean and standard deviation in their carbon prices. Beyond the
mean and standard deviation, the information on price distribution is important. Except for
SHEA which is left skewed, all other carbon prices are right skewed. The Kurtosis of EUA
and GDEA are 2.40 and 2.51, close to 3, showing sharp peaks. Obviously, all of these price
distributions are typically non-normal.

Figure 2 depicts the time-varying prices of six carbon markets in EU and China. The EUA
displays a trend of consistently increasing from 2014 to 2022, implying the rising cost of

Table 1 Summary statistics of carbon prices in all carbon markets

EUA BEA SHEA GDEA SZA HBEA

Mean 18.60 60.22 32.35 23.05 27.05 24.58

Std 16.51 17.22 10.66 12.18 13.83 7.32

Minimum 3.93 24.00 4.21 1.27 1.00 9.38

Q1 6.14 50.00 27.32 14.16 15.19 17.45

Median 10.62 53.50 35.99 18.90 27.39 24.95

Q3 25.36 74.60 40.07 28.07 35.64 28.80

Maximum 88.97 107.26 49.93 77.00 77.89 54.64

Skewness 1.61 0.45 − 1.16 1.51 0.59 0.40

Kurtosis 2.40 − 0.80 0.30 2.51 0.69 0.01

The carbon transaction price of EUA is illustrated with the unit of Euro/t, and that of the various Chinese
markets with the unit of Chinese Yuan/t. EUA indicates the European ETS. BEA, SHEA, GDEA, SZA and
HBEA are respectively Beijing, Shanghai, Guangdong, Shenzhen and Hubei carbon trading systems in China.
Q1 and Q3 are respectively the first and third quartiles of the carbon prices

(a) The European market (b) The Chinese markets

Fig. 2 The time-varying price series for six carbon markets in China and Europe. a The time-varying carbon
prices in the European carbon trading system. b Time-varying carbon prices for the BEA, SHEA, GDEA,
SZA and HBEA in China. The sample spans from May 8, 2014 to January 4, 2022
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carbon emissions, which is evidently a good incentive for companies to develop low carbon
alternatives. However, data from the five pilots in China show different characteristics of
time variation. Typically, the BEA exhibits high prices with high volatility. In particular,
it sharply declines at the end of 2020, which could well be in response to the stresses of
COVID-19. The GDEA, on the other hand, first demonstrates a decreasing trend followed
by an increasing trend during the sample period, reaching its lowest point during 2016. One
possible reason for this is that the GDEA carbon market was not yet mature at the beginning
of our sample, but with the signing of the Paris Agreement, along with the introduction of a
range of other pro-climate policies, the carbon trading market is now becoming more active
with more demands, meaning that prices are again showing an upward trend. In addition, we
can observe from these graphics that all of these carbon price series display non-linear and
non-stationary features.

3.2 Predictive features

In the main empirical analysis, we select the lagged decomposed series offered by SSA as the
input features Xi,t = {

Pi,t−1, Pi,t−2, . . . , Pi,t−K ,
}
where Pi,t−K indicates the subsequence

(trend term and periodic term) with a lag of K periods. In a time-series model, past prices
provide valuable information for prediction, so that we apply the lagged series as the input
feature variables in its learning model. In general, long histories in the past show a fading
effect in predicting, so we select the lag period as 4 (K = 4) which means that the model
is able to include information for the past week. When we apply longer lagged periods, the
prediction performance is not significantly increased.

To investigate whether our results depend on other features, in the extension analysis,
we include several additional macroeconomic variables which may influence carbon prices.
Table 8 in the Appendix reports how we define these macro-state variables, such as term
spread, GDP growth, international oil price (WTI), coal index, and CSI 300 return (Leip-
pold et al., 2022; Ye & Xue, 2021). Moreover, we explore the impacts of COVID-19 on
carbon trading markets. A substantial number of industries were shut down as a result of
the pandemic, creating lower carbon emissions. We collect the data of daily new confirmed
COVID cases from January 2020 to January 2022 to gain further insight into the impact of
the pandemic. Table 2 shows the summary statistics for these additional feature variables.

4 Empirical analysis

First we decompose the price series into both the trend series and periodic series through
the SSA approach. By applying the decomposed series, we are then able to examine the
prediction performance of the six advanced machine learning methods discussed in Sect. 2.

4.1 Decomposition and reconstruction

Based on the descriptive analysis, we find that the patterns of carbon prices are complex and
non-linear. SSA is thus an effective approach for time series analyses such as forecasting or
parameter estimation, since it is able to processmultiple sub-factorswith different information
and frequencies. We separate the raw carbon price series into a trend component and periodic
component using the so-called Sequential SSA (Golyandina & Korobeynikov, 2014). The
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Table 2 Summary statistics of predictive features in the extension analysis

Term
spread

GDP
growth

Oil price Coal
price

CSI300Re COVID_CN COVID_EU

Mean 0.60 6.50 56.26 156.06 0.00 186.84 143,590.69

Std 0.28 3.34 16.03 25.55 0.01 802.10 132,703.89

Minimum − 0.07 − 6.90 − 37.63 124.70 − 0.09 1.00 − 17,071.00

Q1 0.46 6.30 46.25 137.10 − 0.01 25.00 31,756.75

Median 0.58 6.90 53.55 156.20 0.00 49.00 132,825.50

Q3 0.70 7.00 64.30 161.87 0.01 106.25 214,545.75

Maximum 1.94 18.30 107.26 235.80 0.06 15,152.00 1,024,371.00

Skewness 1.45 − 0.70 0.72 1.61 − 0.96 13.56 1.85

Kurtosis 4.68 10.45 1.80 3.03 6.30 235.68 7.22

All non-daily data are transferred to daily data through the constant interpolation method. Term spread, GDP
growth, Oil price, Coal price and CSI300Re are the macro-economic variables used in our extension analysis.
COVID_CN and COVID_EU are the proxies of the COVID-19 pandemic. All variable definitions are shown
in Table 8

decomposition process of the trend factor is smoothing. To obtain the periodic factor, we
choose a window length of 22 trading days, which is almost equivalent to a 1-month sample.

We first report the decomposition results of the EUA. Figure 3 shows six leading eigen-
vectors and their corresponding reconstructed series. It indicates that the first component
in the eigenvalue decomposition represents the trend factor. Thus, the reconstructed trend
series, based on the first eigenvector, is shown in Fig. 4. At this stage, we decompose the raw
carbon prices with a moving window length of 22 trading days (almost 1 month) through
the sequential SSA approach. We find that the trend term captures the main pattern of the
raw carbon prices. For the EUA, this trend continues to increase during our sample period,
implying a growing emphasis on regulating carbon emissions across the continent, as well as

Fig. 3 The reconstructed series of six leading eigenvectors in the first stage of SSA for EUA (L = 22). The
decomposition window length is 22
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Fig. 4 The trend series of the EUA obtained through the SSA approach. The solid black line is the raw carbon
price, and the red dotted line corresponds to the trend factor. The decomposition window length is 22. (Color
figure online)

the increased demand for such regulations from industry and other consumers. Based on the
residual series in the last stage, we then go on to extract the periodic component. Golyandina
and Korobeynikov (2014) claim that the window length should be as long as possible to
include more information, suggesting that the window should be half the length of the full
sample period, and from that the first moving window length can be divided (L = 22 in this
case). Thus, we reset the second window length as 990 trading days. Figure 5 depicts the
periodic component of the EUA’s carbon price. It can be observed that the periodic fluctu-
ations are not significant in the early years but that they have increased significantly in the
last few years (i.e. at the end of the sample).

For brevity, we only discuss here the distributional characteristics of the Chinese carbon
allowance trading price with an example of BEA. Figure 6 suggests that the first component
can be used as an indicator of the overall trend of the BEA carbon prices, so we do the same
to obtain the trend term, as shown in Fig. 7. We can see that the pattern of BEA is obviously
different to that of the EUA. It can be observed, for instance, that the price of carbon did not
rise consistently over the sample period. Within the first 1500 observations, we see a general
upward trend, implying a greater demand for carbon allowances. In contrast, in the sample of
between 1700 and 1900 observations (taken in the period between November 2020 and June

Fig. 5 The periodic component of the EUA through the SSA approach. The decomposition window length is
990
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Fig. 6 The reconstructed series of the six leading eigenvectors in the first stage of SSA for BEA (L = 22). The
decomposition window length is 22

Fig. 7 The trend series of the BEA obtained through the SSA approach. The solid black line is the raw carbon
price, and the red dotted line corresponds to the trend factor. The decomposition window length is 22. (Color
figure online)

2021), we see a clear trend of precipitous falls and sharp rises. This can be seen as a response
to the intensifying climate policy aimed at achieving carbon peak and carbon neutral targets,
as proposed by the Chinese government. Figure 8 is the periodic term of BEA which shows
a higher volatility than the EUA.

The carbon prices of other four pilots in China are also similarly decomposed. Figures 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 show both the trend and periodic factors for each.

4.2 Carbon prediction results

We employ Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) as two com-
mon indicators to evaluate the predictive performance (Chai et al., 2021). A smaller RMSE
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Fig. 8 The periodic component of the BEA obtained through the SSA approach. The decomposition window
length is 990

and MAE indicate a better predictive performance. The definitions are given as follows:

RMSE =
√√√√

N∑

i=1

(
yi − ŷi

)2
/N (25)

MAE =
N∑

i=1

∣∣yi − ŷi
∣∣/N (26)

where yi is the true values of both the trend factor and periodic factor for ith price series. ŷi
corresponds to the estimated values and N is the series length.

To predict carbon prices more accurately, we train our data using six typical machine
learning models, including four classic machine learning models and two deep learning
methods. More precisely, the four classic machine learning models used are SVR, LSSVR,
RF and XGB. The other two models are deep learning models, that is, LSTM and RNN. In
practice, a more complicated model does not indicate a better predictive performance, which
in reality depends far more on the data distribution. In this paper, we first train several models
to discover the best performing prediction model to find both the trend factor and periodic
factor. We then ensemble the best models to predict the decomposed series and so the final
carbon prices.

Tables 3 and 4 report the out-of-performance RMSE and MAE of all methods for all
decomposed series. Some interesting findings are summarized here.

(1) The predictive performance of these models presents significant heterogeneity. This
heterogeneity is determined by the different data distribution profiles. Tables 3 and
4 reveal that for the trend component, the classical support vector regression model
(SSA-SVR) performs best in all carbon trading markets. With respect to the periodic
component, the classical support vector regression model (SSA-SVR) performs best
in the EUA, BEA, SHEA and HBEA carbon trading markets, while the least squares
support vector regression model (SSA-LSSVR) performs best in the GDEA and SZA
carbon trading markets.

(2) For the process of data generation in this paper, the forecasting performance of the deep
learning algorithm is not significantly improved, and in fact performs the worst out of
all the algorithms used.
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Table 3 The RMSE for all carbon trading markets

SSA-LSSVR SSA-SVR SSA-RF SSA-XGB SSA-RNN SSA-LSTM

Trend

EUA 0.04514 0.00879 19.36467 0.53560 0.65031 18.64211

BEA 0.08332 0.06251 0.90825 2.34177 0.23014 15.26186

SHEA 0.00674 0.00391 0.06267 0.09836 0.03971 0.17703

GDEA 0.03376 0.01850 1.30128 0.60485 0.09119 0.37026

SZA 0.04812 0.03088 0.32648 0.75556 0.06405 0.11777

HBEA 0.02695 0.00762 1.02627 0.43804 0.06787 0.58121

Periodic

EUA 0.03584 0.02979 1.05089 0.17752 0.33777 0.67873

BEA 0.10866 0.04060 1.20526 0.82135 0.23772 0.50631

SHEA 0.00581 0.00440 0.07606 0.07643 0.00799 0.01102

GDEA 0.03524 0.03595 0.25043 0.22103 0.04415 0.04154

SZA 0.10258 0.10336 0.99323 0.48324 0.34457 0.40613

HBEA 0.00803 0.00495 0.25797 0.12590 0.09141 0.05635

Since all machine learning models are applied to the decomposed series from the SSA approach, we denote
all models using the prefix SSA. The results of XGB, RNN and LSTM are the average values over 30 time
replications. The bold number indicates the minimum RMSE among all methods for each carbon trading
market

Table 4 The MAE for all carbon trading markets

SSA-LSSVR SSA-SVR SSA-RF SSA-XGB SSA-RNN SSA-LSTM

Trend

EUA 0.03379 0.00651 16.55468 0.38306 0.45033 15.75852

BEA 0.06392 0.03449 0.66014 1.97046 0.13829 13.47671

SHEA 0.00540 0.00223 0.05085 0.08008 0.03918 0.16768

GDEA 0.02603 0.01137 1.24263 0.54394 0.08589 0.33595

SZA 0.03626 0.02121 0.25488 0.58543 0.05004 0.09381

HBEA 0.02136 0.00552 0.67749 0.31490 0.06227 0.37341

Periodic

EUA 0.02515 0.01094 0.53540 0.13352 0.12267 0.26955

BEA 0.08232 0.02640 0.89143 0.64026 0.13329 0.22429

SHEA 0.00425 0.00218 0.06203 0.06279 0.00638 0.00886

GDEA 0.02119 0.02044 0.19697 0.18978 0.03090 0.02363

SZA 0.07880 0.07951 0.70860 0.38625 0.16976 0.18817

HBEA 0.00592 0.00291 0.14866 0.09380 0.02845 0.03464

Since all the machine learning models are applied to the decomposed series from the SSA approach, we denote
all models using the prefix SSA. The results of XGB, RNN and LSTM are the average values over 30 time
replications. The bold number indicates the minimumMAE among all methods for each carbon tradingmarket
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(3) The optimal prediction models for different carbon price components are distinct, which
makes it impossible to consistently and definitively state which algorithm is better. This
problem also supports the validity of our framework. In general, the use of integrated
learning improves predictive performance.

(4) The tree model algorithm performs the most poorly among all algorithms chosen. For
instance, the RF has a high RMSE of 19.36467 for the trend component of EUA, which
is close to being totally unpredictable. Consequently, we conclude that the tree model
is not a good choice for time series.

Figure 9 shows the predicted figures for all carbon prices. Since we decompose the raw
carbon prices into two factors, the trend factor and periodic factor, the predicted carbon price
series is equal to the sum of their predicted series. Our hybrid model can effectively predict
the carbon prices in both the EU and China. If we take the example of BEA, we can see that
the pattern of its sharp increase from April 2021 to May 2021 is effectively predicted by the
model. Table 5 summarizes the overall predictive performance for the price of carbon.

5 Extension analysis

In this section, we further explore the impacts of themacro-economy. In themain analysis, we
only include the lag terms of the decomposed series of carbon prices, ignoring the potential
influences of external factors. Onemay argue that during the COVID-19 crisis, a considerable
number of companies shut down either temporarily or permanently, with an appreciable drop
in CO2 emissions, resulting in the shift in carbon prices. Thus, the predictive performance
of our framework could be adversely impacted due to the pandemic.

To address this concern, we introduce a new feature variable into our machine learning
model, ‘new cases per day’ to be a proxy for the pandemic. COVID_CN and COVID_EU
are the values allocated for the COVID impact in China and EU respectively. The sample
spans the period from January 2020 to January 2022, with a total of 524 observations. Table 6
compares the predictive performance of our model with and without taking the impacts of
COVID-19 into consideration. For the sake of simplicity, we only report the RMSE here. We
find that the predictive performance of the decomposed carbon price series is not significantly
improved after introducing the epidemic variable. This implies that our framework is robust.

Another concern for the integrity of our framework is the influence of macroeconomic
variables. The carbon trading market depends on the carbon emissions of firms, which is
dictated by their climate policy framework, so important macroeconomic indicators such
as GDP growth are potential factors to take into consideration. Here we also add these
macroeconomic variables, as shown in Table 8 in the Appendix. Table 7 demonstrates that
our predictive performance remains with the introduction of these macro variables, whereas
a significant decline in RMSE cannot be observed. While it is clearly important to include
these macro variables in prediction models, their impact should not be overestimated.

6 Conclusion

In this paper, we propose a hybrid machine learning-based method to predict international
carbon price patterns. This hybrid framework, with its two stages of combining SSA and
machine learning methods shows power in effectively forecasting carbon prices in both the
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Fig. 9 The predicted carbon prices and real prices for allmarkets (EUA,BEA, SHEA,GDEA, SZAandHBEA).
The green dotted line represents the real carbon price, and the solid blue line is the predicted carbon price.
(Color figure online)

Table 5 The overall out-of-performance for all carbon prices in the EU and China

EUA BEA SHEA GDEA SZA HBEA

RMSE 1.34257 6.59269 1.00419 2.29022 4.93781 1.21783

MAE 0.96651 5.18567 0.77259 1.64402 3.64036 0.95507

In the process of carbon price prediction using machine learning methods, we split the whole sample into a
training set and a test set. The test set consisting of 201 daily prices is used to examine the validity of our
framework
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Table 6 The RMSE of the trend component and periodic component for all carbon prices

EUA BEA SHEA GDEA SZA HBEA

Trend

With COVID 0.01097 0.07899 0.00520 0.02262 0.03766 0.00843

Without COVID 0.01391 0.07901 0.00556 0.02280 0.03769 0.00848

Periodic

With COVID 0.04085 0.04932 0.00763 0.04586 0.11739 0.00883

Without COVID 0.03751 0.04932 0.00602 0.04587 0.11756 0.00660

All trend series are predicted by the SVRmethod. The periodic components of EUA, BEA, SHEA, and HBEA
are predicted by the SVR model, and those of GDEA and SZA are predicted by the LSSVR model. The test
sample accounts for about 20% of the total, with 104 observations

Table 7 The RMSE of the trend component and periodic component for all carbon prices

EUA BEA SHEA GDEA SZA HBEA

Trend

With macro 0.00884 0.06227 0.00631 0.01806 0.03115 0.00762

Without macro 0.00874 0.06251 0.00389 0.01852 0.03087 0.00761

Periodic

With macro 0.02995 0.04062 0.00611 0.03528 0.10259 0.00497

Without macro 0.02961 0.04067 0.00438 0.03524 0.10258 0.00495

All trend series are predicted by the SVRmethod. The periodic components of EUA, BEA, SHEA, and HBEA
are predicted by the SVR model, and those of GDEA and SZA are predicted by the LSSVR model. The test
sample accounts for about 20% of the total, with 104 observations

EU andChina, particularly in terms of out-of-sample prediction. It remains valid in the excep-
tional circumstances of the COVID-19 pandemic, as well as during different macroeconomic
conditions. We find that for predicting carbon price, complex models such as deep learning
do not always perform consistently, while support vector regression stands out at the second
stage.

There are four steps in total in our two-stage framework, which consists of the separation
process and the prediction process. For the separation process,wefirstly use theSSAapproach
to separate the raw carbon prices, eliminating useless noises and then combine the factors
into the trend factors and periodic factors as major drivers of price. For the prediction process,
various machine learning models are applied to the trend and periodic terms, enabling us to
identify the optimal predictive model for each term separately. Finally, the outputs of the
corresponding optimal learning models for each factor are integrated into a price series. The
framework can accurately predict the time-varying trend of carbon prices.

This paper provides implications for investors, regulators and policy makers. First,
investors can apply the pricing model to hedging in the carbon market. Better understanding
of the new type of assets can give them an edge in the futures market. Second, since the
emerging carbon market calls for increased attention from many countries, regulators may
wish to control the underlying risk and its contagion with other financial markets. Some of
the trend and periodic factors seen here are shared by other financial assets as well. Third,
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global cooperation requires that nations and governments become key players in the manage-
ment of carbon emissions. Policies related to carbon emission control can be better evaluated
and guided by price. Policy makers need reliable information to formulate climate change
policies and greenhouse targets. In 2020 China set a goal of achieving a carbon peak in
2030 and full carbon neutrality by 2060. To help achieve this, there were seven operational
carbon exchanges open in 2021 in China. An efficient carbon allowance trading system is an
essential part of such an ambitious plan.

Finally, we understand that this research is constrained by the limited number of obser-
vations made in a time window which stopped at the beginning of 2022, and also that it
only covers a selection of carbon markets due to the current availability of data. The pro-
posed prediction framework can obviously be extended to other international carbonmarkets,
including those in the US, Singapore, New Zealand and South Korea. Furthermore, The UN
Climate Change Conference (COP26) held at the end of 2021 set new targets on the cutting of
carbon emissions, which form the basis of the Glasgow Climate Pact. This shows the global
efforts being made to try to mitigate the effects of climate change. International conflicts,
including the ongoing Russia-Ukraine crisis, also cause tensions within the energy market
and obviously reshape both the energy structure and carbon emissions not just in Europe but
all over the world. However, the impact of these events is yet to significantly affect carbon
price or volatility. Future studies can focus on these events and test the robustness of our
framework in a new context.
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Appendix

Variable definitions and data sources

In this section, we show all variables in our sample, including definition, observations, data
source and frequency. These variables are the carbon prices in the EU and China’s carbon
allowance trading systems, macro-economic variables in our extension analysis, as well as
pandemic variables (Table 8).
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Table 8 Variables definitions and data sources of empirical analysis

Definition Observations Frequency Data source

Panel A: Carbon prices

EUA The average price of European Union
Allowance (EUA) futures

2011 Daily Datastream

BEA The average price of carbon emission
allowances in Beijing, China

2011 Daily Datastream

SHEA The average price of carbon emission
allowances in Shanghai, China

2011 Daily Datastream

GDEA The average price of carbon emission
allowances in Guangdong, China

2011 Daily Datastream

SZA The average price of carbon emission
allowances in Shenzhen, China

2011 Daily Datastream

HBEA The average price of carbon emission
allowances in Hubei, China

2011 Daily Datastream

Panel B: Macro-economic variables

Term spread The first difference between 10-year
government bond yield and 1-year
government bond yield

2011 Daily Datastream

GDP growth The seasonality GDP growth rate 31 Quarterly Datastream

Oil price WTI crude oil future price 2011 Daily Datastream

Coal price China coal price index 395 Weekly Datastream

CSI300Re The stock logarithm returns of CSI
300 index

2011 Daily Datastream

Panel C: Pandemic variables

COVID_CN The new cases per day in China from
Jan 2020 to Jan 2022

524 Daily Datastream

COVID_EU The new cases per day in EU from Jan
2020 to Jan 2022

524 Daily Datastream

Missing values are filled in by the constant interpolation method

Graphic analysis

(1) Decomposition

In this section, we apply the SSA approach to decompose the raw carbon prices. Figures 10,
11, 12 and 13 show the reconstructed series of six leading eigenvectors in the first stage for
the four pilots, except for BEA in China. We find that the first component mainly drives the
pattern of carbon price.

(2) Reconstruction

In this section, we reconstruct the decomposed subseries in the first stage and obtain the trend
factor and periodic factor. Figures 14, 15, 16 and 17 show the trend factors of the four pilots
in China, and Figs. 18, 19, 20 and 21 depict the corresponding periodic factors.
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Fig. 10 The reconstructed series of six leading eigenvectors in the first stage for SHEA (L = 22). The decom-
position window length is 22

Fig. 11 The reconstructed series of the six leading eigenvectors in the first stage for GDEA (L = 22). The
decomposition window length is 22

Fig. 12 The reconstructed series of the six leading eigenvectors in the first stage for SZA (L = 22). The
decomposition window length is 22
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Fig. 13 The reconstructed series of the six leading eigenvectors in the first stage for HBEA (L = 22). The
decomposition window length is 22

Fig. 14 The trend series of the SHEA through the SSA approach. The solid black line is the raw carbon price,
and the red dotted line corresponds to the trend factor. The decomposition window length is 22. (Color figure
online)

Fig. 15 The trend series of the GDEA through the SSA approach. The solid black line is the raw carbon price,
and the red dotted line corresponds to the trend factor. The decomposition window length is 22. (Color figure
online)
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Fig. 16 The trend series of the SZA through the SSA approach. The solid black line is the raw carbon price,
and the red dotted line corresponds to the trend factor. The decomposition window length is 22. (Color figure
online)

Fig. 17 The trend series of the HBEA through the SSA approach. The solid black line is the raw carbon price,
and the red dotted line corresponds to the trend factor. The decomposition window length is 22. (Color figure
online)

Fig. 18 The periodic component of the SHEA through the SSA approach. The decomposition window length
is 990
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Fig. 19 The periodic component of the GDEA through the SSA approach. The decomposition window length
is 990

Fig. 20 The periodic component of the SZA through the SSA approach. The decomposition window length is
990

Fig. 21 The periodic component of the HBEA through the SSA approach. The decomposition window length
is 990
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